[1] LI T, HOU J, YAN J L, et al. Chiplet heterogeneous integration technology—status and challenges[J]. Electronics, 2020, 9(4): 670. [2] MA X H, WANG Y, WANG Y J, et al. Survey on chiplets: interface, interconnect and integration methodology[J]. CCF Transactions on High Performance Computing, 2022, 4(1): 43-52. [3] 姚鹏, 宋昌明, 胡杨, 等. 高算力芯片未来技术发展途径[J]. 前瞻科技, 2022, 1(3): 115-129. [4] 杨晖. 后摩尔时代Chiplet技术的演进与挑战[J]. 集成电路应用, 2020, 37(5): 52-54. [5] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228-252. [6] 钟毅, 江小帆, 喻甜, 等. 芯片三维互连技术及异质集成研究进展[J]. 电子与封装, 2023, 23(3): 030102. [7] LAU J H. Recent advances and trends in multiple system and heterogeneous integration with TSV interposers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(1): 3-25. [8] HUANG P K, LU C Y, WEI W H, et al. Wafer level system integration of the fifth generation CoWoS?-S with high performance Si interposer at 2500 mm2[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 101-104. [9] HOU S Y, LEE C H, WANG T D, et al. Supercarrier redistribution layers to realize ultra large 2.5D wafer scale packaging by CoWoS[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 510-514. [10] CHEN W T, LIN C C, TSAI C H, et al. Design and analysis of logic-HBM2E power delivery system on CoWoS? platform with deep trench capacitor[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020: 380-385. [11] LEE S, JEE Y, PARK S, et al. A study on memory stack process by hybrid copper bonding (HCB) technology[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 1085-1089. [12] SAINT-PATRICE D, MALHOUITRE S, ASSOUS M, et al. Process integration of photonic interposer for chiplet-based 3D systems[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 5-12. [13] 隗娟, 刘丰满, 薛海韵, 等. 基于硅转接板的光电混合集成共封装技术研究[J]. 微纳电子与智能制造, 2019, 1(3): 126-130. [14] 孙瑜, 刘丰满, 薛海韵. 高速高密度光电共封装技术[J]. 中兴通讯技术, 2018, 24(4): 27-32. [15] 林源为, 赵晋荣. 一种在深硅刻蚀工艺中减小底部圆角的方法[J]. 半导体技术, 2022, 47(1): 42-45,64. [16] 王硕, 杨发顺, 马奎. 多次热氧化削减硅通孔内壁扇贝纹[J]. 人工晶体学报, 2021, 50(6): 1131-1137. [17] 冉红雷, 彭浩, 黄杰, 等. 三维封装微系统TSV转接板技术研究[J]. 电子产品可靠性与环境试验, 2019, 37(6): 38-43. [18] KIM H C, KIM M J, KIM J J. Communication—acceleration of TSV filling by adding thiourea to PEG-PPG-SPS-I–[J]. Journal of the Electrochemical Society, 2018, 165(3): D91-D93. [19] WU H Y, LI Z Y, WANG Y, et al. Communication—fast bottom-up filling of high aspect ratio micro vias using a single CTAB additive[J]. Journal of the Electrochemical Society, 2020, 167(13): 132507. [20] 姬峰. 基于金属硬掩膜集成方案的铜互连双大马士革结构刻蚀工艺的开发及优化[D]. 上海: 上海交通大学, 2016. [21] 周峻晨. 基于40 nm技术大马士革铜电镀工艺通孔空洞缺陷的改善[D]. 上海: 上海交通大学, 2020. [22] 孙红旗, 王溯, 于仙仙, 等. 大马士革工艺中电镀铜层杂质对其性能的影响[J]. 电镀与涂饰, 2023, 42(9): 40-44. [23] 林煦呐, 刘福强, 刘永进, 等. 电镀技术在大马士革工艺中的应用研究[J]. 电子工业专用设备, 2022, 51(1): 20-24. [24] WANG L, SONG C, WANG J, et al. A wet etching approach for the via-reveal of a wafer with through silicon vias[J]. Microelectronic Engineering, 2017, 179: 31-36. [25] YU J, DETTERBECK S, LEE C, et al. An alternative approach to backside via reveal (BVR) for a via-middle through-silicon via (TSV) flow[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2015: 551-554. [26] KUMAR N, RAMASWAMI S, DUKOVIC J, et al. Robust TSV via-middle and via-reveal process integration accomplished through characterization and management of sources of variation[C]//2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 2012: 787-793. [27] JOURDAIN A, BUISSON T, PHOMMAHAXAY A, et al. Integration of TSVs, wafer thinning and backside passivation on full 300mm CMOS wafers for 3D applications[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011: 1122-1125. [28] HUANG B K, LIN C M, HUANG S J, et al. Integration challenges of TSV backside via reveal process[C]//2013 IEEE 63rd Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2013: 1818-1821. [29] KATH C, MARK C, DANIEL A, et al. Optimization of low temperature PECVD dielectric stacks for via reveal passivation[C]//2020 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 2020: 1-6. [30] PENG K W, CIOU C H, CHIANG C W, et al. Optimization and challenges of backside via flatness reveal process[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2015: 1818-1821. [31] JOBLOT S, FARCY A, HOTELLIER N, et al. Wafer level encapsulated materials evaluation for chip on wafer (CoW) approach in 2.5D Si interposer integration[C]//2013 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 2013: 1-7. [32] CHEN M F, LIN C S, LIAO E B, et al. SoIC for low-temperature, multi-layer 3D memory integration [C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020: 855-860. [33] CHEN M F, CHEN F C, CHIOU W C, et al. System on integrated chips (SoIC(TM) for 3D heterogeneous integration[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 594–599. [34] WUU J, AGARWAL R, CIRAULA M, et al. 3D V-cache: the implementation of a hybrid-bonded 64 MB stacked cache for a 7 nm x86-64 CPU[C]//2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022: 428-429. [35] AGARWAL R, CHENG P, SHAH P, et al. 3D packaging for heterogeneous integration[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 1103-1107. [36] Mahajan R .Advanced packaging for heterogeneous integration[J].Electronic Device Failure Analysis, 2021, 23(3): 2-40. [37] GOMES W, KHUSHU S, INGERLY D B, et al. 8.1 lakefield and mobility compute: a 3D stacked 10nm and 22FFL hybrid processor system in 12×12 mm2, 1 mm package-on-package[C]//2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020: 144-146. [38] PRASAD C, CHUGH S, GREVE H, et al. Silicon reliability characterization of intel’s foveros 3D integration technology for logic-on-logic die stacking[C]//2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2020: 1-5. [39] INGERLY D B, ENAMUL K, GOMES W, et al. Foveros: 3D integration and the use of face-to-face chip stacking for logic devices[C]//2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019: 19.6.1-19.6.4. [40] ELISABETH S, DUBE B, RADUFE N. Intel Foveros 3D packaging technology[EP/OL]. [2024-05-01]. https://medias.yolegroup.com/uploads/2020/10/SP20555-Yole-Intel-Foveros-3D-Packaging-Technology-Flyer.pdf. [41] COUDRAIN P, CHAUSSE P, ARNAUD L, et al. Active interposer technology for chiplet-based advanced 3D system architectures[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 569-578. [42] VIVET P, GUTHMULLER E, THONNART Y, et al. IntAct: a 96-core processor with six chiplets 3D-stacked on an active interposer with distributed interconnects and integrated power management[J]. IEEE Journal of Solid-State Circuits, 2021, 56(1): 79-97. |