[1] LIANG S, YIN S Y, LIU L B, et al. FP-BNN: Binarized neural network on FPGA[J]. Neurocomputing, 2018, 275: 1072-1086. [2] 鞠虎,高营,田青,等. 基于RISC-V 的神经网络加速器硬件实现[J]. 电子与封装, 2023, 23(2): 020306. [3] WU R D, LIU B, FU P, et al. An accelerator architecture of changeable-dimension matrix computing method for SVM[J]. Electronics, 2019, 8(2): 143. [4] CHEN Y H, YANG T J, EMER J S, et al. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 292-308. [5] 魏少军, 李兆石, 朱建峰, 等. 可重构计算: 软件可定义的计算引擎[J]. 中国科学(信息科学), 2020, 50(9): 1407-1426. [6] 聂一, 郑博文, 柴志雷. 基于异构可重构计算的AES加密系统研究[J]. 计算机应用研究, 2022, 39(7): 2143-2148. [7]李丽. 可重构计算芯片关键技术研究及应用[D]. 南京: 南京大学, 2019. [8]谭龙, 严明玉, 吴欣欣, 等. 面向稀疏卷积神经网络的CGRA加速器研究[J]. 高技术通讯, 2024,34(2): 173-186. [9] 刘硕. CGRA-PIMSim: 基于粗粒度可重构阵列的存内处理架构仿真器[J]. 现代计算机, 2021(5): 97-101. [10] WANG B C, DUAN Z A, SHEN Z X, et al. A reconfigurable high-precision and energy-efficient circuit design of sigmoid, tanh and softmax activation functions[C]//2023 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Hefei, China, 2023: 118-119. [11] CHEN H, YU Z G, XU J, et al. Huicore: A generalized hardware accelerator for complicated functions[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2463-2476. [12] SUN H Q, LUO Y Y, HA Y J, et al. A universal method of linear approximation with controllable error for the efficient implementation of transcendental functions[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(1): 177-188. [13] LYU F, XIA Y, MAO Z L, et al. ML-PLAC: Multiplierless piecewise linear approximation for nonlinear function evaluation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(4): 1546-1559. [14] 胡雄龙, 陈进华, 乔海, 等. 跳跃迭代的高速高精CORDIC算法及FPGA实现[J]. 计算机仿真, 2023, 40(10): 365-370, 398. [15] YUAN B. Efficient hardware architecture of softmax layer in deep neural network[C]//2016 29th IEEE International System-on-Chip Conference (SOCC), Seattle, WA, USA, 2016: 323-326. [16] 郁媛, 李沛君, 王光奇, 等. 用于VSLAM系统的CNN在FPGA平台上的加速[J]. 计算机工程与设计, 2024, 45(1): 71-78. [17] ZHANG C, WANG X A, YONG S S, et al. An energy-efficient convolutional neural network processor architecture based on a systolic array[J]. Applied Sciences, 2022, 12(24): 12633.
|