[1] Yole Group. Status of the MEMS industry[R]. Lyon: Yole Group, 2025: 66. [2] SHEA H R. Effects of radiation on MEMS[C]// Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS X, San Francisco, California, USA, 2011. [3] 贺朝会, 陈伟, 韩建伟, 等. 新型微系统的辐射效应与抗辐射加固技术[J]. 中国科学(物理学、力学、天文学), 2024, 54(3): 1-18. [4] 毛海燕, 赖凡, 谢家志, 等. 抗辐射加固技术发展动态研究[J]. 微电子学, 2022, 52(2): 197-205. [5] STASSINOPOULOS E G, RAYMOND J P. The space radiation environment for electronics[J]. Proceedings of the IEEE, 1988, 76(11): 1423-1442. [6] 付铭昂. 基于28 nm CMOS集成电路的抗辐射加固技术研究[D]. 成都: 电子科技大学, 2024. [7] HARTZELL A L, DA SILVA M G, SHEA H R. MEMS可靠性[M]. 恩云飞, 贾玉斌, 黄钦文, 译. 北京: 电子工业出版社, 2012: 113-119. [8] 刘珉强, 杜川华, 许蔚, 等. 微机电系统加速度计辐射效应[J]. 太赫兹科学与电子信息学报, 2021, 19(1): 162-165,169. [9] 李利娜, 孙润军, 陈美玉, 等. 辐射防护材料的研究进展[J]. 合成纤维, 2019, 48(10): 21-25. [10] 陈克勤, 程洁, 金运范, 等. 对用72.5MeV12C4+轰击镍和不锈钢样品引起的辐照效应的研究[J]. 核技术, 1983, 6(6): 25-28, 72. [11] ARUTT C N, ALLES M L, LIAO W J, et al. The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMs)[J]. Semiconductor Science and Technology, 2017, 32(1): 013005. [12] SHEA H R. Radiation sensitivity of microelectromechanical system devices[J]. Nanolithography, MEMS, and MOEMS, 2009, 8(3): 031303. [13] SCHANWALD L P, SCHWANK J R, SNIEGOWSI J J, et al. Radiation effects on surface micromachined comb drives and microengines[J]. IEEE Transactions on Nuclear Science, 1998, 45(6): 2789-2798. [14] SHEA H R. MEMS for pico- to micro-satellites[C]//MOEMS and Miniaturized Systems VIII, San Jose, California, USA, 2009: 208-215. [15] 李得天, 孙雯君, 成永军, 等. MEMS型电容薄膜真空计研究进展[J]. 真空与低温, 2017, 23(2): 63-67. [16] KNUDSON A R, BUCHNER S, MCDONALD P, et al. The effects of radiation on MEMS accelerometers[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 3122-3126. [17] 许蔚, 杨杰, 刘珉强. MEMS加速度计微敏感结构的伽马辐照退化效应[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 1101-1106. [18] ZHAO X W, LI N N, WANG L J, et al. The effect mechanism of electron irradiation on MEMS comb-type capacitive accelerometer[C]//2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 2024: 1-5. [19] BANDI T, POLIDO-GOMES J, NEELS A, et al. Proton-radiation tolerance of silicon and SU-8 as structural materials for high-reliability MEMS[J]. Journal of Microelectromechanical Systems, 2013, 22(6): 1395-1402. [20] 蒋礼达. 电容式MEMS加速度传感器的低温及辐照效应表征[D]. 哈尔滨: 黑龙江大学, 2021. [21] PITT E B, BARTH E J, DIGGINS Z J, et al. Radiation response and adaptive control-based degradation mitigation of MEMS accelerometers in ionizing dose environments[J]. IEEE Sensors Journal, 2017, 17(4): 1132-1143. [22] MAROZAU I, AUCHLIN M, PEJCHAL V, et al. Reliability assessment and failure mode analysis of MEMS accelerometers for space applications[J]. Microelectronics Reliability, 2018, 88/89/90: 846-854. [23] LEE C I, JOHNSTON A H, TANG W C, et al. Total dose effects on Microelectromechanical Systems (MEMS): accelerometers[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 3127-3132. [24] ALVAREZ M, JIMENEZ J J, ESCRIBANO D, et al. Low dose rate testing of ADXL327 accelerometer for a Mars mission[C]//2015 IEEE Radiation Effects Data Workshop (REDW), Boston, MA, USA, 2015: 1-3. [25] WANG L, TANG J Y, SONG J, et al. Gamma irradiation effects on resistance of surface micromachined polycrystalline silicon beams in MEMS[C]//2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 2011: 445-448. [26] BERUTI G M, CON S M, BORRIELLO A, et al. Radiation tolerant fiber optic humidity sensors for high energy physics applications [C]//7th European Workshop on Structural Health Monitoring, Nantes, France, 2014: 1465-1472. [27] LEE J, MCCURDY M W, REED R A, et al. In situ measurement of 1.8-MeV proton radiation effects on comb-drive MEMS resonators[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 462-468. [28] KAPIC A, TSIROU A, VERDINI P G, et al. Humidity sensors for high energy physics applications: a review[J]. IEEE Sensors Journal, 2020, 20(18): 10335-10344. [29] 胡静洁. MEMS中氮化硅电介质的空间应用可靠性研究[D]. 南京: 东南大学, 2018. [30] SHEA H R, GASPARYAN A, CHAN H B, et al. Effects of electrical leakage currents on MEMS reliability and performance[J]. IEEE Transactions on Device and Materials Reliability, 2004, 4(2): 198-207. [31] SHEA H R. Reliability of MEMS for space applications[C]//Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, San Jose, CA, USA, 2006: 84-93. [32] 曾晓洋, 黎明, 李志宏, 等. 微纳集成电路和新型混合集成技术[J]. 中国科学: 信息科学, 2016, 46(8): 1108-1135. [33] BOGUE R. Radiation hardening and sensors for radioactive environments[J]. Sensor Review, 2013, 33(3): 191-196. [34] HOLBERT K E, NESSEL J A, MCCREADY S S, et al. Response of piezoresistive MEMS accelerometers and pressure transducers to high gamma dose[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1852-1859. [35] BELWANSHI V, PHILIP S, TOPKAR A. Gamma radiation induced effects on the performance of piezoresistive pressure sensors fabricated using different technologies[J]. IEEE Transactions on Nuclear Science, 2019, 66(9): 2055-2062. [36] BELWANSHI V, SEHRA K, ARYAN, et al. Degradation mechanism of piezoresistive sensors under the influence of γ-ray irradiation[J]. IEEE Sensors Journal, 2024, 24(23): 38740-38747. [37] FRANCIS L A, GKOTSIS P, KILCHYTSKA V, et al. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems[C]//Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS Ⅻ, San Francisco, CA, USA, 2013: 126-144. [38] BELWANSHI V, PHILIP S, TOPKAR A. Experimental study of gamma radiation induced degradation of a piezoresistive pressure sensor[J]. Microsystem Technologies, 2018, 24(8): 3299-3305. [39] GOMES J, SHEA H R. Displacement damage effects in silicon MEMS at high proton doses[C]//Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS X, San Francisco, CA, USA, 2011: 126-135. [40] GONG H Q, LIAO W J, ZHANG E X, et al. Total-ionizing-dose effects in piezoresistive micromachined cantilevers[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 263-268. [41] GONG H Q, LIAO W J, ZHANG E X, et al. Proton-induced displacement damage and total-ionizing-dose effects on silicon-based MEMS resonators[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 34-38. [42] HOLBERT K E, HEGER A S, MCCREADY S S. Performance of commercial off-the-shelf microelectromechanical systems sensors in a pulsed reactor environment[C]//2010 IEEE Radiation Effects Data Workshop, Denver, CO, USA, 2010: 8. [43] MARINARO D G, MCMAHON P, WILSON A. Proton radiation effects on MEMS silicon strain gauges[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1714-1718. [44] MIYAHIRA T F, BECKER H N, MCCLURE S S, et al. Total dose degradation of MEMS optical mirrors[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1860-1866. [45] BANDI T, BABOROWSKI J, DOMMANN A, et al. Evaluation of silicon tuning fork resonators under mechanical loads and space-relevant radiation conditions[J]. Nanolithography, MEMS, and MOEMS, 2014, 13(4): 043019. [46] LYNES D D, YOUNG J, LANG E, et al. Impact of silicon ion irradiation on aluminum nitride-transduced microelectromechanical resonators[J]. Advanced Materials Interfaces, 2023, 10(32): 2300240. [47] LYNES D D, CHANDRAHALIM H, BEVINS J E, et al. Unfolding the effects of cobalt-60 irradiation on contour-mode piezoelectric resonators[C]//2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 2023: 1-4. [48] SUI W, ZHENG X Q, LIN J T, et al. Effects of ion-induced displacement damage on GaN/AlN MEMS resonators[J]. IEEE Transactions on Nuclear Science, 2022, 69(3): 216-224. [49] CAFFEY J R, KLADITIS P E. The effects of ionizing radiation on microelectromechanical systems (MEMS) actuators: electrostatic, electrothermal, and bimorph[C]//17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, Maastricht, Netherlands, 2004: 133-136. [50] 杨拥军, 吝海锋, 师谦, 等. 微机械热对流加速度传感器可靠性研究[J]. 微纳电子技术, 2003, 40(S1): 317-320. [51] 施常勇, 张肖. MEMS陀螺在航天器控制系统中的应用评述[J]. 传感器与微系统, 2015, 34(7): 1-4. [52] CHEN S Q, ZHAO Q C, CUI J. Effect of proton radiation on mechanical structure of silicon MEMS inertial devices[J]. IEEE Transactions on Electron Devices, 2022, 69(9): 5155-5161. [53] 曲延涛, 全洪涛, 韩永超. 硅微电容式声压传感器γ射线电离辐射效应研究[J]. 中国辐射卫生, 2019, 28(5): 508-512.
|