中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2024, Vol. 24 ›› Issue (11): 110101 . doi: 10.16257/j.cnki.1681-1070.2024.0176

• ICTC2024(集成电路测试大会)专题 •    下一篇

基于机器学习的芯片老化状态估计算法研究

宋国栋1,邵家康2,陈诚1   

  1. 1. 中国电子科技集团公司第五十八研究所,江苏 无锡 ?214035; 2. 华中科技大学武汉集成电路学院,武汉 430074
  • 收稿日期:2024-10-12 出版日期:2024-11-25 发布日期:2024-11-25
  • 作者简介:宋国栋(1984—),男,硕士,高级工程师,主要从事数字和数模混合集成电路测试技术的研究。

Research on Chip Aging State Estimation Algorithm Based on Machine Learning

SONG Guodong1, SHAO Jiakang2, CHEN Cheng1   

  1. 1. ChinaElectronics Technology Group Corporation No.58 ResearchInstitute, Wuxi 214035, China; 2. School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2024-10-12 Online:2024-11-25 Published:2024-11-25

摘要: 随着芯片的集成度越来越高,其晶体管数量也越来越多,老化速度加快。由于工业应用、装备系统等领域对芯片可靠性的要求较高,因此研究估计芯片老化的方法至关重要。总结现有的芯片老化估计和预警的技术方法,将机器学习算法应用于芯片老化状态估计,实验结果表明,极端梯度提升树算法的效果较好。对现有的极端梯度提升树算法进行贝叶斯优化,寻找模型的最优参数,使用优化后的算法估计的状态值与真实值的均方误差比优化前降低了0.13~0.25,优化后的模型预测结果较为精准。

关键词: 芯片老化, 机器学习, 贝叶斯优化

Abstract: With the increasing integration of chips, the number of transistors is also increasing, and the aging rate is accelerating. Because of the high requirement of chip reliability in industrial applications, equipment systems and other fields, it is very important to study the method of estimating chip aging. The existing technical methods of chip aging estimation and early warning are summarized, and the machine learning algorithm is applied to chip aging state estimation. Experimental results show that the extreme gradient boosting tree algorithm has a better effect. Bayesian optimization is carried out on the existing extreme gradient boosting tree algorithm to find the optimal parameters of the model. The mean square error between the estimated state value and the true value by using the optimized algorithm is 0.13~0.25 lower than that before optimization, and the optimized model is more accurate in predicting the results.

Key words: chip aging, machine learning, Bayesian optimization

中图分类号: