中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2026, Vol. 26 ›› Issue (1): 010303 . doi: 10.16257/j.cnki.1681-1070.2026.0011

• 电路与系统 • 上一篇    下一篇

扩散模型神经网络加速策略综述*

邹子涵1,闫鑫明1,郑鹏1,张顺1,蔡浩1,2,刘波1,2   

  1. 1. 东南大学集成电路学院,南京  210096;2. 国家集成电路设计自动化技术创新中心,南京  210031
  • 收稿日期:2025-04-29 出版日期:2026-01-29 发布日期:2025-12-10
  • 作者简介:邹子涵(2001—),男,江苏徐州人,博士研究生,主要研究方向为神经网络量化与神经网络加速器。

Review of Neural Network Acceleration Strategies for Diffusion Models

ZOU Zihan1, YAN Xinming1, ZHENG Peng1, ZHANG Shun1, CAI Hao1,2, LIU Bo1,2   

  1. 1. School of Integrated Circuits, Southeast University, Nanjing 210096, China; 2. National Centerof Technology Innovation for EDA, Nanjing 210031, China
  • Received:2025-04-29 Online:2026-01-29 Published:2025-12-10

摘要: 随着神经网络的发展,扩散模型通过其独特的扩散机制在图像生成任务中取得了非常大的成就。然而,为了实现优异的任务性能,其引入了大量的计算和复杂的网络结构,限制了其广泛应用,尤其是在资源受限的边缘端设备上。高效的模型加速算法和加速器软硬件协同框架已成为有效的解决方案。基于多种扩散模型加速和高效部署策略,从适用于通用计算平台的高效算法设计到软硬件框架协同设计,介绍了当前最先进的扩散模型加速策略。

关键词: 扩散模型, 模型加速, 边缘部署, 软硬件协同设计, 高效推理

Abstract: With the development of neural networks, diffusion models have achieved remarkable success in image generation tasks due to their unique diffusion mechanism. However, to achieve outstanding task performance, they introduce substantial computational overheads and complex network structures, which severely hinders their widespread application, particularly on edge devices with limited resources. High-efficiency model acceleration algorithms and co-designed software-hardware frameworks for accelerators have emerged as effective solutions. Based on various diffusion model acceleration and efficient deployment strategies, an overview of state-of-the-art acceleration techniques for diffusion models is provided, covering both high-efficiency algorithmic designs for general-purpose computing platforms and hardware-software framework co-designs.

Key words: diffusion model, model acceleration, edge deployment, hardware-software co-designed, efficient inference

中图分类号: