[1] MONDAL A, ROY A, MITRA R, et al. Comparative study of variations in
gate oxide material of a novel underlap DG MOS-HEMT for analog/RF and high
power applications[J]. Silicon.
2020, 12: 2251-2257. [2] MUKHERJEE H, DASGUPTA R, KAR M, et al. A comparative analysis of
analog performances of underlapped dual gate AlGaN/GaN based MOS-HEMT and
Schottky-HEMT[C]// IEEE Calcutta Conference, Kolkata, India, Feb. 28-29, 2020:
412-416. [3] BINDRA A. Wide-bandgap-based power devices: Reshaping the power
electronics landscape. IEEE Power
Electronics Magazine[J]. 2015, 2(1): 42-47. [6] 白欣娇,袁凤坡,李晓波,等.增强型GaN HEMT凹槽栅刻蚀技术研究进展[J].微纳电子技术, 2018,55(10):762-767. [7] 闰琪.基于GaN的双Buck并网逆变器的损耗分析及共模电流抑制研究[D].北京:北京交通大学, 2016. [8] 马肖男.基于GaN HEMT器件的双有源全桥变换器研究[D].杭州:杭州电子科技大学, 2019. [10] CHEN Y Q, FENG J T, WANG J L, et al. Degradation behavior and
mechanisms of E-mode GaN HEMTs with p-GaN gate under reverse electrostatic
discharge stress[J]. IEEE Transactions
on Electron Devices, 2020, 67(2): 566-570. [12] KAWABATA S, ASUBAR J T, TOKUDA H, et al. Effect of post-gate
deposition annealing on the electrical characteristics of AlGaN/GaN HEMTs with
p-GaN gate[C]// IEEE International
Meeting for Future of Electron Devices, Kansai, Kyoto, June 21-22, 2018:
1-2. [13] TAPAJNA M, HILT O, BAHAT-TREIDEL E, et al. Gate reliability
investigation in normally-off p-type-GaN Cap/AlGaN/GaN HEMTs under forward bias
stress[J]. IEEE Electron device letters, 2016, 37(4): 385-388. [14] GRECO G, IUCOLANO F, FRANCO S D, et al. Effects of annealing
treatments on the properties of Al/Ti/p-GaN interfaces for normally off p-GaN
HEMTs[J]. IEEE Transactions on
Electron Devices, 2016, 63(7): 2735-2741. [19] EFTHYMIOU L, MURUKESAN K, LONGOBARDI G, et al. Understanding the
threshold voltage instability during off-state stress in p-GaN HEMTs[J]. IEEE Electron Device Letters, 2019,
40(8): 1253-1256. [20] SAYADI L, IANNACCONE G, SICRE S, et al. Threshold voltage
instability in p-GaN gate AlGaN/GaN HFETs[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2454-2460. [25] WANG Y H, LIANG Y C, SAMUDRA G S, et al. 6.5 V high threshold
voltage AlGaN/GaN power metal-insulator-semiconductor high electron mobility
transistor using multilayer fluorinated gate stack[J]. IEEE Electron Device Letters. 2015, 36(4): 381-383. [26] CUI M, CAI Y, LAM S, et al. Characterization of transient
threshold voltage shifts in enhancement- and depletion-mode AlGaN/GaN
metal-insulator-semiconductor (MIS)-HEMTs[C]// IEEE International Conference on Electron Devices and Solid State
Circuits, Shenzhen, 2018: 1-2. [28] YATABE Z, ASUBAR J T, HASHIZUME T. Insulated gate and surface
passivation structures for GaN-based power transistors[J]. Journal of Physics D: Applied Physics,
2016, 49(39): 393001. [29] WU J, LU W, YU P K L. Normally-off AlGaN/GaN MOS-HEMT with a
two-step gate recess[C]// IEEE International Conference on Electron Devices and
Solid-State Circuits, Singapore, June 1-4, 2015: 594-596. [30] KWAK H T, CHANG S B, KIM H J, et al. Operational improvement of
AlGaN/GaN high electron mobility transistor by an inner field-plate
structure[J]. Applied Science, 2018, 8(6): 974. [32] JIANG H, ZHU R, LYU Q, et al. High-voltage p-GaN HEMTs with
off-state blocking capability after gate breakdown[J]. IEEE Electron Device
Letters, Feb. 5, 2019, 40(4): 530-533. [34] SUN H, KUANG W, LIN X, et al. Experimentation and simulation for
cap gate AlGaN/GaN HEMT power devices[C]// IEEE International Conference on
Electron Devices and Solid State Circuits, Shenzhen, June 6-8, 2018: 1-2. [36] NG J H, TONE K, ASUBAR J T, et al. High breakdown voltage
AlGaN/GaN HEMTs on free-standing GaN substrate[C]// IEEE International Meeting
for Future of Electron Devices, Kansai, Kyoto, June 4-5, 2015: 54-55. [37] OZAWA T, ASUBAR J T, TOKUDA H, et al. Reduced current collapse in
AlGaN/GaN HEMTs with p-GaN layer in gate-drain access region[C]// IEEE
International Meeting for Future of Electron Devices, Kansai, Kyoto, June
21-22, 2018: 1-2. [40] CHEN K J, HABERLEN O, LIDOW A, et al. GaN-on-Si power
technology: Devices and applications[J]. IEEE Transactions on
Electron Devices, 2017, 64(3): 779-795. [42] KOEHLER A D, ANDERSON T J, TADJER M J, et al. Impact of surface
passivation on the dynamic on-resistance of proton-irradiated AlGaN/GaN
HEMTs[J]. IEEE Electron Device Letters, 2016, 37(5): 545-548. [43] KABEMURA T, UEDA S, KAWADA Y, et al. Enhancement of breakdown
voltage in AlGaN/GaN HEMTs: field plate plus high-k passivation layer and high
acceptor density in buffer layer[J]. IEEE Transactions on Electron Devices.
2018, 65(9): 3848-3854. [45] HAO R, LI W, YU G, et al. Breakdown enhancement and current
collapse suppression by high-resistivity GaN cap layer in normally-off
AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters, 2017, 38(11): 1567-1570. [46] LIU X, CHIU H C, LIU C H, et al. Normally-off p-GaN gated
AlGaN/GaN HEMTs using plasma oxidation technique in access region[J]. Journal
of the Electron Devices Society, 2020, 8: 229-234. [47] YOSHIDA S, SAKAIDA Y, ASUBAR J T, et al. Current collapse in
AlGaN/GaN HEMTs with a GaN cap layer[C]// IEEE International Meeting for Future
of Electron Devices, Kansai, Kyoto, June 4-5, 2015: 48-49. [48] DHARMARASU N, KARTHIKEYAN G S, AGRAWAL M, et al. AlGaN/GaN HEMT
grown on SiC with carbon doped GaN buffer by MOCVD[C]// Electron Devices
Technology and Manufacturing Conference, Singapore, Mar. 12-15, 2019: 434-436. [52] ANDERSON T J, TADJER M J, HITE J K, et al. Effect of reduced
extended defect density in MOCVD grown AlGaN/GaN HEMTs on native GaN
substrates[J]. IEEE Electron Device Letters, 2016, 37(1): 28-30. [53] KUMAZAKI Y, OHKI T, KOTANI J, et al. Remarkable current collapse
suppression in GaN HEMTs on free-standing GaN substrates[C]// IEEE BiCMOS and
Compound Semiconductor Integrated Circuits and Technology Symposium, Nashville,
TN, USA, Nov. 3-6, 2019: 1-4. [54] LIU Z, CHEN D, WAN L, et al. Micron-scale annealing for ohmic
contact formation applied in GaN HEMT gate-first technology[J]. IEEE Electron
Device Letters, 2018, 39(12): 1896-1899. [55] LIU Z, XING W, NG G I, et al. RF and power GaN HEMT on 200
mm-diameter 725 μm-thick p-Si substrates[C]// Electron Devices Technology and
Manufacturing Conference, Singapore, Nov. 3-6, 2019: 100-102. [56] LIU Z, XIE H, LEE K H, et al. GaN HEMTs with breakdown voltage of
2200 V realized on a 200 mm GaN-on-Insulator (GNOI)-on-Si wafer[C]// Symposium
on VLSI Technology, Kyoto, Japan, 2019: T242-T243. [57] SUN R, LIANG Y C, YEO Y C, et al. Realistic trap configuration
scheme with fabrication processes in consideration for the simulations of
AlGaN/GaN MIS-HEMT devices[J]. IEEE Journal of Emerging and Selected Topics in
Power Electronics, 2016, 4(3): 720-729. [59] CRUPI F, MAGNONE P, STRANGIO S, et al. Low frequency noise and
gate bias instability in normally off AlGaN/GaN HEMTs[J]. IEEE Transactions on
Electron Devices, 2016, 63(5): 2219-2222. [60] SUBRAMANI N K, COUVIDAT J, HAJJAR A A, et al. Low-frequency drain
noise characterization and TCAD physical simulations of GaN HEMTs:
Identification and analysis of physical location of traps[J]. IEEE Electron
Device Letters, 2018, 39(1): 107-110. [65] YU C J, HSU C W, WU M C, et al. Improved DC and RF performance of
novel MIS p-GaN-gated HEMTs by gate-all-around structure[J]. IEEE Electron
Device Letters, 2020, 41(5): 673-676.
|