[1] MA C T, GU Z H. Review of GaN HEMT
applications in power converters over 500 W[J]. Electronics. 2019,8:1401. [3] HOU F Z, WANG W B, CAO L Q, et al. Review
of packaging schemes for power module[J]. IEEE Journal of Emerging and Selected
Topics in Power Electronics. 2020, 8(1): 223-238. [4] JONES E A, WANG F, COSTINETT D. Review of
commercial GaN power devices and GaN-based converter design challenges[J].
Journal of Emerging and Selected Topics in Power Electronics. 2016, 4(3):
707-719. [6] MOOK M C H, LOH A, JIA Y. A new development
of thermally enhanced GaN-QFN with heat slug attach bonding technology[C]//
Proceedings of 2019 IEEE 21st Electronics Packaging Technology Conference,
Singapore, Dec. 4-6, 2019: 634-639. [8] ZHANG W, HUANG X, LIU Z,
et al. A new package of high-voltage cascade gallium nitride device for
megahertz operation[J]. IEEE Transactions on Power Electronics. 2016, 31(2):
1344-1353. [11] SAVULAK S, GUO B,
KRISHNAMURTHY S. Three-phase inverter employing PCB embedded GaN FETs[C]//
Proceedings of IEEE Applied Power Electronics Conference and Exposition, San
Antonio, TX, Mar. 4-8, 2018: 1256-1260. [12] LU S, ZHAO T, BURGOS R P,
et al. PCB-interposer-on-DBC packaging of 650 V, 120 A GaN HEMTs[C]//
Proceedings of IEEE Applied Power Electronics Conference and Exposition, New
Orleans, LA, USA, Mar. 15-19, 2020: 370-373. [13] ZHANG B, WANG S. An
overview of wide bandgap power semiconductor device packaging techniques for
EMI reduction[C]// Proceedings of IEEE Symposium on Electromagnetic
Compatibility, Signal Integrity and Power Integrity, Long Beach, CA, Jul. 30-
Aug. 3, 2018: 297-301. [14] BROTHERS J A, BEECHNER T.
GaN module design recommendations based on the analysis of a commercial 3-phase
GaN module[C]// Proceedings of IEEE Energy Conversion Congress and Exposition,
Baltimore, MD, USA, Sept. 29- Oct. 3, 2019: 4109-4116. [17] IRADUKUNDA A C, HUITINK D
R, LUO F. A review of advanced thermal management solutions and the
implications for integration in high-voltage packages[J]. IEEE Journal of
Emerging and Selected Topics in Power Electronics, 2020, 8(1): 256-271. [18] JONES E A, ROOIJ M D.
High-power-density GaN-based converters: thermal management considerations[J].
IEEE Power Electronics Magazine, 2019, 6(4): 22-29. [19] MOON S H, CHOI K S, LEE J
H, et al. Application of aluminum flat heat pipe for dry cooling near the hot
spot of a radar array with a multiscale structure[J]. Applied Thermal
Engineering, 2020, 169: 114894. [20] BUCHTA M, THORPE J,
BLANCK H, et al. Influence of packaging materials on GaN RF power devices[C]//
Proceedings of IEEE MTTS International Microwave Workshop Series on Advanced
Materials and Processes for RF and THz Applications, Suzhou, Jul. 1-3,2015:
1-3. [21] KAO H L, CHO C L, CHIU H
C, et al. Mechanical tensile strain for AlGaN/GaN metal-insulator-semiconductor
high-electron-mobility transistors on a silicon-on-insulator substrate[J].
Journal of Alloys and Compounds, 2020, 820: 153178. [22] JEBALI C, KOUKI A.
Thermal effects analysis of GaN HEMT power amplifier based on LTCC substrate
integration[C]// Proceedings of IEEE Canadian Conference on Electrical &
Computer Engineering, Quebec City, QC, May 13-16, 2018: 1-4. [23] CHVALA A, SZOBOLOVSZKY R,
KOVAC J, et al. Advanced characterization techniques and analysis of thermal
properties of AlGaN/GaN multifinger power HEMTs on SiC substrate supported by
three-dimensional simulation[J]. Journal of Electronic Packaging. 2019, 141:
031007. [25] NITTALA P V K, REMESH N,
NIRANJAN S, et al. Enabling transfer of ultrathin layers of GaN for
demonstration of a heterogenous stack on copper heat spreader[J]. IEEE
Transactions on Components, Packaging and Manufacturing Technology. 2020,
10(2): 339-342. [26] KIM D, CHEN C, NOH S, et
al. Development of high-strength and superior thermal shock-resistant GaN/DBA
die attach structure with Ag sinter joining by thick Ni metallization[J].
Microelectronics Reliability, 2019, 100-101: 113380. [29] BAJWA A A, QIN Y, REINER
R, et al. Assembly and packaging technologies for high-temperature and
high-power GaN devices[J]. IEEE Transactions on Components, Packaging and
Manufacturing Technology. 2015, 5(10): 1402-1416. [30] MARGOMENOS A, MICOVIC M,
KURDOGHLIAN A, et al. X band highly efficient GaN power amplifier
utilizing built-in electroformed heat sinks for advanced thermal management[C]//
Proceedings of IEEE MTT-S International Microwave Symposium Digest, Seattle,
WA, Jun. 2-7, 2013: 1-4. [32] MANIER C, KLEIN K, WUST
F, et al. Wafer level embedding technology for packaging of planar GaN
half-bridge module in high power density conversion applications[C]//
Proceedings of International Exhibition and Conference for Power Electronics,
Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany,
Jun. 5-7, 2018: 1-8. [33] DITRI J, PEARSON R R,
CADOTTE R, et al. GaN unleashed: The benefits of microfluidic cooling[J]. IEEE
Transactions on Semiconductor Manufacturing. 2016, 29(4): 376-383. [34] NOCHETTO H C, JANKOWSKI N
R, COHEN A B. GaN HEMT junction temperature dependence on diamond substrate
anisotropy and thermal boundary resistance[C]// Proceedings of IEEE Compound
Semiconductor Integrated Circuit Symposium, La Jolla, CA, Oct. 14-17, 2012:
1-4. [35] GUGGENHEIM R, RODES L.
Roadmap review for cooling high-power GaN HEMT devices[C]// Proceedings of IEEE
International Conference on Microwaves, Antennas, Communications and Electronic
Systems, Tel-Aviv, Nov. 13-15, 2017: 1-6. [36] BIRBARAH P, GEBRAEL T,
FOULKES T, et al. Water immersion cooling of high power density electronics[J].
International Journal of Heat and Mass Transfer, 2020, 147: 118918. [37] YU C, LABOURE E, BUTTAY
C. Thermal management of lateral GaN power devices[C]// Proceedings of IEEE
International Workshop on Integrated Power Packaging, Chicago, IL, May 3-6,
2015: 40-43. [41] LEE W, SARLIOGLU B.
Thermal analysis of lateral GaN HEMT devices for high power density integrated
motor drives considering the effect of PCB layout and parasitic parameters[C]//
Proceedings of IEEE Transportation Electrification Conference and Expo, Long
Beach, CA, Jun. 13-15, 2018: 471-476. [42] LEE W, HAN D, BOBBA D, et
al. Design of single-turn air-core integrated planar inductor for improved
thermal performance of GaN HEMT-based synchronous buck converter[J]. IEEE
Transactions on Industry Applications, 2020, 56(2): 1543-1552. [43] ZHANG S, LABOURE E,
LABROUSSE D, et al. Thermal management for GaN power devices mounted on PCB
substrates[C]// Proceedings of IEEE International Workshop on Integrated Power
Packaging, Delft, Apr. 5-7, 2017: 1-5. [44] YAN Z, LIU G, KHAN J M,
et al. Graphene quilts for thermal management of high-power GaN transistors[J].
Nature Communications, 2012, 3: 827. [45] LI L, FUKUI A, WAKEJIMA
A. Bonding GaN on high thermal conductivity graphite composite with adequate
interfacial thermal conductance for high power electronics applications[J].
Applied Physics Letters, 2020, 116: 142105. [46] SAITO Y, AIZAWA T, WASA
K, et al. Leak-proof packaging for GaN chip with controlled thermal spreading
and transients[C]// Proceedings of IEEE BiCMOS and Compound Semiconductor
Integrated Circuits and Technology Symposium, San Diego, CA, Oct. 15-17, 2018:
243-246. [47] OH S K, JANG T, JO Y J,
et al. Bonding pad over active structure for chip shrinkage of high-power
AlGaN/GaN HFETs[J]. IEEE Transactions on Electron Devices, 2016, 63(2):
620-624.
|