[1] CHEN K J, HAEBERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. [2] KONG Y, ZHOU J, KONG C, et al. Monolithic integration of E/D-mode AlGaN/GaN MIS-HEMTs[J]. IEEE Electron Device Letters, 2014, 35(3): 336-338. [3] ZHENG Z, SONG W, ZHANG L, et al. Monolithically integrated GaN ring oscillator based on high-performance complementary logic inverters[J]. IEEE Electron Device Letters, 2020, 42(1): 26-29. [4] SUN R, LAI J, CHEN W, et al. GaN power integration for high frequency and high efficiency power applications: A review[J]. IEEE Access, 2020, 8: 15529-15542. [5] UEMOTO Y, UEDA T, TANAKA T, et al. Recent advances of high voltage AlGaN/GaN power HFETs[C]// Gallium Nitride Materials and Devices IV, 2009. [6] CAI Y, ZHOU Y, LAU K M, et al. Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode[J]. IEEE Transactions on Electron Devices, 2006, 53(9): 2207-2215. [7] KAMBAYASHI H, SATOH Y, OOTOMO S, et al. Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage[J]. Solid-State Electronics, 2010, 54(6): 660-664. [8] ZHANG J, HE L, LI L, et al. High-mobility normally OFF Al2O3/AlGaN/GaN MISFET with damage-free recessed-gate structure[J]. IEEE Electron Device Letters, 2018, 39(11): 1720-1723. [9] WANG Y, WANG M, XIE B, et al. High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique[J]. IEEE Electron Device Letters, 2013, 34(11): 1370-1372. [10] ZHOU Q, LIU L, ZHANG A, et al. 7.6 V threshold voltage high-performance normally-off Al2O3/GaN MOSFET achieved by interface charge engineering[J]. IEEE Electron Device Letters, 2016, 37(2): 165-168. [11] UEMOTO Y, HIKITA M, UENO H, et al. Gate injection transistor (GIT) - A normally-off AlGaN/GaN power transistor using conductivity modulation[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3393-3399. [12] CAI Y, CHENG Z, YANG Z, et al. High-temperature operation of AlGaN/GaN HEMTs direct-coupled FET logic (DCFL) integrated circuits[J]. IEEE Electron Device Letters, 2007, 28(5): 328-331. [13] REINER R, WALTEREIT P, WEISS B, et al. Monolithically integrated power circuits in high-voltage GaN-on-Si heterojunction technology[J]. IET Power Electronics, 2018, 11(4): 681-688. [14] WEI J, TANG G, XIE R, et al. GaN power IC technology on p-GaN gate HEMT platform[J]. Japanese Journal of Applied Physics, 2020, 59(SG): SG0801. [15] SUN R, LIANG Y C, YEO Y-C, et al. All-GaN power integration: Devices to functional subcircuits and converter ICs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 31-41. [16] SHUR M S, BYKHOVSKI A D, GASKA R, et al. Accumulation hole layer in p-GaN/AlGaN heterostructures[J]. Applied Physics Letters, 2000, 76(21): 3061-3063. [17] NAKAJIMA A, KUBOTA S, TSUTSUI K, et al. GaN-based complementary metal-oxide-semiconductor inverter with normally off Pch and Nch MOSFETs fabricated using polarisation-induced holes and electron channels[J]. IET Power Electronics, 2018, 11(4): 689-694. [18] REUTERS B, HAHN H, POOTH A, et al. Fabrication of p-channel heterostructure field effect transistors with polarization-induced two-dimensional hole gases at metal-polar GaN/AlInGaN interfaces[J]. Journal of Physics D-Applied Physics, 2014, 47(17): 175103. [19] ZHANG Z, ENCOMENDERO J, CHAUDHURI R, et al. Polarization-induced 2D hole gases in pseudomorphic undoped GaN/AlN heterostructures on single-crystal AIN substrates[J]. Applied Physics Letters, 2021, 119(16):162104. [20] HAHN H, REUTERS B, POOTH A, et al. p-Channel enhancement and depletion mode GaN-based HFETs with quaternary backbarriers[J]. IEEE Transactions on Electron Devices, 2013, 60(10): 3005-3011. [21] LI G, WANG R, SONG B, et al. Polarization-induced GaN-on-insulator E/D mode p-channel heterostructure FETs[J]. IEEE Electron Device Letters, 2013, 34(7): 852-854. [22] HAHN H, REUTERS B, KOTZEA S, et al. First monolithic integration of GaN-based enhancement mode n-channel and p-channel heterostructure field effect transistors[C]// 2014 72nd Annual Device Research Conference (DRC), 2014: 259-260. [23] CHU R, CAO Y, CHEN M, et al. An experimental demonstration of GaN CMOS technology[J]. IEEE Electron Device Letters, 2016, 37(3): 269-271. [24] ZHENG Z, SONG W, ZHANG L, et al. High ION and ION/IOFF ratio enhancement-mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform[J]. IEEE Electron Device Letters, 2020, 41(1): 26-29. [25] ZHENG Z, ZHANG L, SONG W, et al. Gallium nitride-based complementary logic integrated circuits[J]. Nature Electronics, 2021, 4(8): 595-603. [26] CHEN J, LIU Z, WANG H, et al. A GaN complementary FET inverter with excellent noise margins monolithically integrated with power gate-injection HEMTs[J]. IEEE Transactions on Electron Devices, 2022, 69(1): 51-56. [27] CHENG Z, MU F, YATES L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8376-8384. [28] WANG C, HUA M, YANG S, et al. E-mode p-n Junction/AlGaN/GaN HEMTs with enhanced gate reliability[C]// Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020: 14-17. [29] HE J, TANG G, CHEN K J. VTH instability of p-GaN gate HEMTs under static and dynamic gate stress[J]. IEEE Electron Device Letters, 2018, 39(10): 1576-1579. [30] WEI J, XU H, XIE R, et al. Principles and impacts of dynamic threshold voltage in a p-GaN gate high-electron-mobility transistor[J]. Semiconductor Science and Technology, 2021, 36(2): 024006. [31] HUA M, CHEN J, WANG C, et al. E-mode p-GaN gate HEMT with p-FET bridge for higher VTH and enhanced VTH stability[C]// 2020 IEEE International Electron Devices Meeting (IEDM), 2020. [32] PU T, WANG X, HUANG Q, et al. Normally-off AlGaN/GaN heterojunction metal-insulator-semiconductor field-effect transistors with gate-first process[J]. IEEE Electron Device Letters, 2019, 40(2): 185-188. [33] HE J, ZHONG Y, ZHOU Y, et al. Recovery of p-GaN surface damage induced by dry etching for the formation of p-type ohmic contact[J]. Applied Physics Express, 2019, 12(5): 055507. [34] WANG J, LU S, CAI W, et al. Ohmic contact to p-type GaN enabled by post-growth diffusion of magnesium[J]. IEEE Electron Device Letters, 2022, 43(1): 150-153. [35] LI L, WANG X, LIU Y, et al. NiO/GaN heterojunction diode deposited through magnetron reactive sputtering[J]. Journal of Vacuum Science & Technology a Vacuum Surfaces & Films, 2016, 34(2): 02D104. [36] ZHANG T, LI X, PU T, et al. Transparent ohmic contact for boron doped diamond using p-type NiO film synthesized through oxidation[J]. Materials Science in Semiconductor Processing, 2020, 105: 104740. [37] YANG D, HUANG Y, LIU K, et al. The transparent NiO film ohmic contact to p-type and unintentionally doped In0.53Ga0.47As[J]. Materials Science in Semiconductor Processing, 2021, 131(4): 105855.
|