[1] GLASER J. How GaN power transistors drive high-performance lidar: generating ultrafast pulsed power with GaN FETs[J]. IEEE Power Electronics Magazine, 2017, 4(1): 25-35. [2] 刘博,于洋,姜朔. 激光雷达探测及三维成像研究进展[J]. 光电工程,2019, 46(7):21-33. [3] LIU J Y, SUN Q, FAN Z, et al. TOF lidar development in autonomous vehicle[C]// 2018 3rd Optoelectronics Global Conference (OGC), 2018: 185-190. [4] WARREN M E. Automotive LIDAR technology [C]// 2019 Symposium on VLSI Circuits, 2019: C254-C255. [5] THAKUR R. Scanning LIDAR in advanced driver assistance systems and beyond: Building a road map for next-generation LIDAR technology[J]. IEEE Consumer Electronics Magazine, 2016, 5(3):48-54. [6] LIDOW A, MICHAEL D R, JOHAN S, et al. GaN transistors for efficient power conversion[M]. 3rd ed. Hoboken: John Wiley & Sons, 2020: 281-299. [7] ELORANTA E W, RAZENKOV I A, HEDRICK J, et al. The design and construction of an airborne high spectral resolution lidar[C]// 2008 IEEE Aerospace Conference, 2008: 1-6. [8] WEIMER C, LIEBER M, ROHRSCHNEIDER R, et al. A spaceborne adaptive lidar for earth imaging[C]// 2017 IEEE International Geoscience and Remote Sensing Symposium, 2017: 4224-4227. [9] GLASER J. Kilowatt laser driver with 120 A, sub-10 nanosecond pulses in <3 cm2 using an GaN FET[C]// PCIM Asia 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2018: 1-6. [10] GLASER J S. Optimizing performance of a pulsed laser diode driver based on a GaN FET[C]// 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia. 2019, Taipei, Taiwan. IEEE, 2019: 1-5. [11] TAJFAR A, ZAMPROGNO M, VILLA F, et al. A 20 A sub-nanosecond integrated CMOS laser diode driver for high repetition rate SPAD-based direct time-of-flight measurements[C]// 2018 International Conference on Computing, Electronics & Communications Engineering, 2018: 272-276. [12] ABRAMOV E, EVZELMAN M, PERETZ M. Low-Voltage Sub-Nanosecond Pulsed Current Driver IC for High-Speed LIDAR Applications[J], IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3): 3001-3013. [13] MA Y S, LIN Z Y, LIN Y T, et al. 29.6A digital-type GaN driver with current-pulse-balancer technique achieving sub-nanosecond current pulse width for high-resolution and dynamic effective range LiDAR system[C]// 2019 IEEE International Solid-State Circuits Conference, 2019: 466-468. [14] EPC2016C-enhancement mode power transistor[EB/OL]. (2021-04) [2022-08-09]. https://epc-co.com/epc/Portals/0/epc/documents/datasheets/epc2016c_datasheet.pdf. [15] EPC2040-enhancement mode power transistor[EB/OL]. (2021-04) [2022-08-09]. https://epc-co.com/epc/Portals/0/epc/documents/datasheets/epc2040_datasheet.pdf. [16] REUSCH D, STRYDOM J. Understanding the effect of PCB layout on circuit performance in a high-frequency Gallium-Nitride-based point of load converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015. [17] KINZER D. Monolithic GaN power IC technology drives wide bandgap adoption[C]// 2020 IEEE International Electron Devices Meeting, 2020. [18] YAMASHITA Y, STOFFELS S, POSTHUMA N, et al. Monolithically integrated E-mode GaN-on-SOI gate driver with power GaN-HEMT for MHz-switching[C]// 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications, 2018: 231-236. [19] ZHENG Z Y, XU H, ZHANG L, et al. On the operating speed and energy efficiency of GaN-based monolithic complementary logic circuits for integrated power conversion systems[J]. 自然科学基础研究:英文版, 2021 (6): 661-671. [20] KAUFMANN M, LUEDERS M, KAYA C, et al. 18.2 A monolithic E-mode GaN 15 W 400 V offline self-supplied hysteretic buck converter with 95.6% efficiency[C]// 2020 IEEE International Solid-State Circuits Conference, 2020: 288-290. [21] SHI Y Y, ZHOU Q, CHENG Q, et al. Bidirectional threshold voltage shift and gate leakage in 650 V p-GaN AlGaN/GaN HEMTs: The role of electron-trapping and hole-injection[C]// 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, 2018: 96-99. [22] SHINJI U, YUSUKE K, HIDEKAZU U, et al. A compact GaN-based DC-DC converter IC with high-speed gate drivers enabling high efficiencies[C]// 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC, 2014: 51-54. [23] TANG G F, KWAN M H, ZHANG Z F, et al. High-speed, high-reliability GaN power device with integrated gate driver[C]// 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, 2018: 76-79. [24] ZHU M H, MATIOLI E. Monolithic integration of GaN-based NMOS digital logic gate circuits with E-mode power GaN MOSHEMTs[C]// 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, 2018: 236-239. [25] CHEN H Y, LIN W T, LIAO C H, et al. A domino bootstrapping 12V GaN driver for driving an on-chip 650V eGaN power switch for 96% high efficiency[C]// 2020 IEEE Symposium on VLSI Circuits, 2020: 1-2. [26] KAO Y Y, HUNG S H, CHEN H Y, et al. Fully integrated GaN-on-silicon gate driver and GaN switch with temperature-compensated fast turn-on technique for achieving switching frequency of 50 MHz and slew rate of 118.3 V/Ns[J]. IEEE Journal of Solid-State Circuits, 2021, 56(12): 3619-3627. [27] MING X, YE Z K, LIN Z Y, et al. A fully-integrated GaN driver for time-of-flight lidar applications[C]// 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs, 2022: 169-172. [28] LIDOW A, GLASER J. GaN-based solutions for cost-effective direct and indirect time-of-flight lidar transmitters are changing the way we live[C]// 2022 International Power Electronics Conference, 2022: 637-643. |