[1] SHIKATA S. Recent R&D toward diamond power switching device[J]. 応用物理, 2013, 82(4): 299-304. [2] LIANG Q, CHIN C Y, LAI J, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures[J]. Applied Physics Letters, 2009, 94(2): 024103. [3] FRAUENHEIM T, JUNGNICKEL G, SITCH P, et al. A molecular dynamics study of N-incorporation into carbon systems: Doping, diamond growth and nitride formation[J]. Diamond and Related Materials, 1998, 7(2): 348-355. [4] SHIMAOKA T, YAMADA H, MOKUNO Y, et al. Oxygen concentration dependence in microwave plasma-enhanced chemical vapor deposition diamond growth in the (H, C, O, N) System[J]. Physica Status Solidi. A: Applications & Materials Science, 2022, 219(11): 1-8. [5] ZHANG Q, LI H D, CHENG S H, et al. The effect of CO2 on the high-rate homoepitaxial growth of CVD single crystal diamonds[J]. Diamond and Related Materials, 2011, 20(4): 496-500. [6] SU Y, LI H D, CHENG S H, et al. Effect of N2O on high-rate homoepitaxial growth of CVD single crystal diamonds[J]. Journal of Crystal Growth, 2012, 351(1): 51-55. [7] SIO D A, FRAIA M D, ANTONELLI M, et al. X-ray micro beam analysis of the photoresponse of an enlarged CVD diamond single crystal[J]. Diamond and Related Materials, 2013, 34: 36-40. [8] NAD S, CHARRIS A, ASMUSSEN J. MPACVD growth of single crystalline diamond substrates with PCD rimless and expanding surfaces[J]. Applied Physics Letters 2016, 109(16): 162103. [9] LIANG Q, YAN C S, LAI J, et al. Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition[J]. Crystal Growth & Design, 2014, 14(7): 3234-3238. [10] LI Y C, LIU X D, SHU G Y, et al. Thinning strategy of substrates for diamond growth with reduced PCD rim: Design and experiments[J]. Diamond & Related Materials, 2020, 101: 107574. [11] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Simulation of temperature and gas flow distributions in region close to a diamond substrate with finite thickness[J]. Diamond & Related Materials, 2006, 15(10): 1738-1742. [12] MOKUNO Y, CHAYAHARA A, SODA Y, et al. High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition[J]. Diamond & Related Materials, 2006, 15(4-8): 455-459. [13] MOKUNO Y, CHAYAHARA A, SODA Y, et al. Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diamond & Related Materials, 2005, 14(11-12): 1743-1746. [14] XIE W L, LV X Y, WANG Q L, et al. Relationship between spatial position of seed and growth mode in single-crystal diamond grown with an enclosed-type holder[J]. Chinese Physics B, 2022, 31(10): 108106. [15] MOKUNO Y, CHAYAHARA A, YAMADA H, et al. Large single crystal diamond plates produced by microwave plasma CVD[J]. Materials Science Forum, 2009, 615-617: 991-994. [16] GEIS M W, SMITH H I, ARGOITIA A, et al. Large‐area mosaic diamond films approaching single‐crystal quality[J]. Applied Physics Letters, 1991, 58(22): 2485-2487. [17] JANSSEN G, GILING L J. “Mosaic” growth of diamond[J]. Diamond & Related Materials, 1995, 4(7): 1025-1031. [18] FINDELING C, GICQUEL A. Study for fabricating large area diamond single-crystal layers[J]. Thin Solid Films, 1997, 308: 178-185. [19] FINDELING C, GICQUEL A, CHIRON R. Growth of large single-crystal diamond layers: Analysis of the junctions between adjacent diamonds [J]. Diamond & Related Materials, 1998, 7(7): 986-998. [20] MOKUNO Y; YAMADA H; CHAYAHARA A, et al. A 2-in mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10): 102110. [21] SHU G Y, DAI B, RALCHENKQ V G, et al. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy[J]. Journal of Crystal Growth, 2017, 463: 19-26. [22] WANG X W, DUAN P, CAO Z Z, et al. Surface morphology of the interface junction of CVD mosaic single-crystal diamond[J]. Materials, 2020, 13(1): 91. [23] OHMAGARI S, YAMADA H, TSUBOUCHI N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries[J]. Applied Physics Letters, 2019, 114(8): 082104. [24] ZHU X H, LIU J L, SHAO S W, et al. Evolution of growth characteristics around the junction in the mosaic diamond[J]. Diamond & Related Materials, 2021, 120: 108640. [25] ANATOLY, B, MUCHNIKOV D B, et al. Characterization of interfaces in mosaic CVD diamond crystal[J]. Journal of Crystal Growth, 2016, 442: 62-67. [26] POSTHILL J B, MALTA D P, HUDSON G C, et al. Demonstration of a method to fabricate a large-area diamond single crystal[J]. Thin Solid Films, 1995, 271(1): 39-49. [27] YUKAKO K, NOBUTERU T, YOSHIAKI M, et al. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process[J]. Applied Physics Letters, 2014, 104(25): 252109. [28] TANAKA K, OHMAGARI S, TACHIKI M, et al. Characterization of mosaic diamond wafers and hot-filament epilayers by using HR-EBSD technics[J]. Diamond & Related Materials, 2022, 123: 108839. [29] TSUBOTA T, OHTA M, KUSAKABE K, et al. Heteroepitaxial growth of diamond on an iridium (100) substrate using microwave plasma-assisted chemical vapor deposition[J]. Diamond & Related Materials, 2000, 9(7): 1380-1387. [30] GOLDING B, BEDNARSKI-MEINKE C, DAI Z. Diamond heteroepitaxy: pattern formation and mechanisms[J]. Diamond & Related Materials, 2004, 13(4): 545-551. [31] KASU M, TAKAYA R, MASAKI R, et al. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate[J]. Diamond & Related Materials, 2022, 128: 109287. [32] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium[J]. Japanese Journal of Applied Physics, 1996, 35Part 2(No. 8B): L1072-L1074. [33] OHTSUKA K, FUKUDA H, SUZUKI K, et al. Fabrication of epitaxial diamond thin film on iridium[J]. Japanese Journal of Applied Physics, 1997, 36Part 2 (No. 9A/B): L1214-L1216. [34] SCHRECK M, ROLL H, STRITZKER B. Diamond/Ir/SrTiO3: A material combination for improved heteroepitaxial diamond films[J]. Applied Physics Letters, 1999, 74(5): 650-652. [35] SAW K G, ANDRIENKA I, CIMMINO A, et al. Growth of diamond on alpha-(0001) sapphire substrates[J]. Diamond & Related Materials, 2003, 12(10-11): 1663-1669. [36] CHOI U, SHIN H, KWAK T, et al. Growth and characterization of heteroepitaxial (001) and (111) diamond on Ir/sapphire structures[J]. Diamond & Related Materials, 2022, 121: 108770. [37] WANG Q, WU G, NEWHOURSE-ILLIGE T A, et al. Heteroepitaxial diamond film deposition on KTaO3 substrates via single-crystal iridium buffer layers[J]. Diamond & Related Materials, 2020, 110: 108117. [38] KIM S-W, KAWAMATA Y, TAKAYA R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11 2 ˉ0) sapphire substrate [J]. Applied Physics Letters, 2020, 117(20): 202102. [39] KIM S W, TAKAYA R, HIRANO S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (1120) misoriented substrate by step-flow mode[J]. Applied Physics Express, 2021, 14(11): 115501. [40] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017(7): 44462. [41] KWAK T, LEE J, CHOI U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate[J]. Diamond & Related Materials, 2021, 114: 108335. [42] FEI W X, WEI K T, MORISHITA A, et al. Local initial heteroepitaxial growth of diamond (111) on Ru (0001)/c-sapphire by antenna-edge-type microwave plasma chemical vapor deposition[J]. Applied Physics Express, 2020, 117(11): 112102. |