[1] PARKER M. A gallium nitride HEMT that enhances[J]. Nature Electronics, 2021, 4: 858. [2] 黄火林,孙楠. GaN基增强型HEMT器件的研究进展[J]. 电子与封装, 2023, 23(1): 010108. [3] 邱金朋, 沈竞宇. GaN HEMT热阻测试技术研究[J]. 电子与封装, 2023, 23(11): 110104 . [4] GUGGENHEIM R, RODES L. Roadmap review for cooling high-power GaN HEMT devices[C]//2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 2017: 8244734. [5] MENEGHESSO G, VERZELLESI G, DANESIN F, et al. Reliability of GaN high-electron-mobility transistors: state of the art and perspectives[J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 332-343. [6] MOHANTY S K, CHEN Y Y, YEH P H, et al. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure[J]. Scientific Reports, 2019, 9: 19691. [7] 杜建宇,唐睿,张晓宇,等. 基于金刚石的先进热管理技术研究进展[J]. 电子与封装, 2023, 23(3): 030107. [8] 过增元. 当前国际传热界的热点——微电子器件的冷却[J]. 中国科学基金, 1988(2): 24-29. [9] ZHANG Y C, LIU S T. The optimization model of the heat conduction structure[J]. Progress in Natural Science, 2008, 18(6): 665-670. [10] GARIMELLA S V, PERSOONS T, WEIBEL J A, et al. Electronics thermal management in information and communications technologies: challenges and future directions[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1191-1205. [11] SRIDHARAN S, VENKATACHALAM A, YODER P D. Electrothermal analysis of AlGaN/GaN high electron mobility transistors[J]. Journal of Computational Electronics, 2008, 7(3): 236-239. [12] CHRISTOFFERSON J, MAIZE K, EZZAHRI Y, et al. Microscale and nanoscale thermal characterization techniques[J]. Journal of Electronic Packaging, 2008, 130(4): 41101. [13] MARINI M, BOUZIN M, SIRONI L, et al. A novel method for spatially-resolved thermal conductivity measurement by super-resolution photo-activated infrared imaging[J]. Materials Today Physics, 2021, 18: 100375. [14] CHANG K S, YANG S C, KIM J Y, et al. Precise temperature mapping of GaN-based LEDs by quantitative infrared micro-thermography[J]. Sensors, 2012, 12(4): 4648-4660. [15] KUBALL M, POMEROY J W. A review of Raman thermography for electronic and opto-electronic device measurement with submicron spatial and nanosecond temporal resolution[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(4): 667-684. [16] XU S, FAN A R, WANG H D, et al. Raman-based nanoscale thermal transport characterization: a critical review[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119751. [17] SANDELL S, CHáVEZ-áNGEL E, EL SACHAT A, et al. Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures[J]. Journal of Applied Physics, 2020, 128(13): 131101. [18] JIANG P Q, QIAN X, YANG R G. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials[J]. Journal of Applied Physics, 2018, 124(16): 161103. [19] FARZANEH M, MAIZE K, LüER?EN D, et al. CCD-based thermoreflectance microscopy: principles and applications[J]. Journal of Physics D: Applied Physics, 2009, 42(14): 143001. [20] CHATTERJEE B, DUNDAR C, BEECHEM T E, et al. Nanoscale electro-thermal interactions in AlGaN/GaN high electron mobility transistors[J]. Journal of Applied Physics, 2020, 127(4): 44502. [21] LIU W J, YANG B Z. Thermography techniques for integrated circuits and semiconductor devices[J]. Sensor Review, 2007, 27(4): 298-309. [22] SCHMIDT A J, CHEAITO R, CHIESA M. A frequency-domain thermoreflectance method for the characterization of thermal properties[J]. The Review of Scientific Instruments, 2009, 80(9): 094901. [23] BAHK J H, SHAKOURI A. Ultra-fast thermoreflectance imaging for electronic, optoelectronic, and thermal devices[C]//2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA, 2019: 8972732. [24] PIER?CI?SKA D. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers[J]. Journal of Physics D: Applied Physics, 2018, 51(1): 013001. [25] DILHAIRE S, GRAUBY S, CLAEYS W. Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions[J]. Applied Physics Letters, 2004, 84(5): 822-824. [26] SHAKOURI A, ZIABARI A, KENDIG D, et al. Stable thermoreflectance thermal imaging microscopy with piezoelectric position control[C]//2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 2016: 7458456.
|