[1] 王晓蕾, 张有生, 戴晟伟, 等. 电动汽车功率电子封装用耐高温环氧塑封料的研究进展[J]. 绝缘材料, 2024, 57(1): 9-17. [2] 王晓蕾, 张有生, 戴晟伟, 等. 面向电动汽车功率芯片封装应用的耐高温塑封料研究进展[J]. 绝缘材料, 2024, 57(2): 1-9. [3] 王殿年, 李泽亮, 郭本东, 等. 第三代半导体器件用高可靠性环氧塑封料的制备[J]. 电子与封装, 2022, 22(11): 110202. [4] 曹二平. 环氧树脂及酚醛树脂黏度对环氧塑封料性能的影响[J]. 电子与封装, 2024, 24(1): 010202. [5] 王璐, 常白雪, 岳艺宇, 等. 绿色含溴阻燃剂在环氧塑封料中的应用研究[J]. 电子与封装, 2022, 22(10): 100201. [6] 王璐, 常白雪, 岳艺宇, 等. 环氧塑封料用热潜伏型固化促进剂的研究与应用进展[J]. 电子与封装, 2022, 22(9): 090201. [7] 陈煜海, 余永涛, 刘天照, 等. 高带宽存储器的技术演进和测试挑战[J]. 电子与封装, 2023, 23(2): 020205. [8] 钟伟军, 吴迪, 孔宪伟. 高带宽存储器测试技术研究[J]. 信息技术与标准化, 2022(7): 28-32. [9] LEE W S, LEE D W, SON H Y, et al. A study on the effectiveness of underfill in the high bandwidth memory with TSV[J]. International Symposium on Microelectronics, 2013, 2013(1): 810-813. [10] KIM K, PARK M J. Present and future, challenges of high bandwith memory (HBM)[C]//2024 IEEE International Memory Workshop (IMW), Seoul, Republic of Korea, 2024: 1-4. [11] JUN H, CHO J, LEE K, et al. HBM (high bandwidth memory) DRAM technology and architecture[C]//2017 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2017: 1-4. [12] MOON K I, SON H Y, LEE K. Advanced packaging technologies in memory applications for future generative AI era[C]//2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023: 1-4. [13] CHOQUETTE J. Nvidia hopper GPU: scaling performance[C]//2022 IEEE Hot Chips 34 Symposium (HCS), Cupertino, CA, USA, 2022: 1-46. [14] LEE S Y, PARK J, MOON J K, et al. A study on the advanced chip to wafer stack for better thermal dissipation of high bandwidth memory[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 878-882. [15] 戴晟伟, 张有生, 杨昶旭, 等. 模塑型环氧底填料的研究与应用进展[J]. 中国胶粘剂, 2023, 32(12): 52-60. [16] WANG H Y, SHAO S, PHAM V, et al. Quantification of underfill influence to chip packaging interactions of WLCSP[C]//ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, California, USA, 2018 [17] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228-252. [18] FELTON K, FERGUSON J. Design process & methodology for achieving high-volume production quality for FOWLP packaging[C]//2020 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 2020: 1-10. [19] TC C, HO D, SC C, et al. Fan-out wafer level packaging development line[C]//2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2020: 440-444. [20] IWAI M, UKAWA K, ICHIZAWA G, et al. Latest technologies of epoxy molding compound (EMC) for FO-WLP[J]. International Symposium on Microelectronics, 2020, 2020(1): 51-56. [21] LIM S P S, CHONG S C, SEIT W W, et al. Comprehensive study on effect of chip layout and mold thickness on die shift and warpage for FOWLP applications[C]//2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2022: 945-950. [22] CHEN B-H, HWANG S J, CHANG Y-Y, et al. Epoxy molding compound filler clogging simulation during integrated circuit encapsulation process[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(1): 174-184.  [23] SUK K M, HOON K T, HYOCK P J. Mold underfill composition for TSV: JP 2023-109410A[P]. 2023-08-08.  [24] LEE SANCHEZ W A, LI J W, CHIU H T, et al. Highly thermally conductive epoxy composites with AlN/BN hybrid filler as underfill encapsulation material for electronic packaging[J]. Polymers, 2022, 14(14): 2950. [25] UENO K, DOHI K, MURANAKA K, et al. Development of liquid, granule and sheet type epoxy molding compounds for fan out wafer level package[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017: 285-291. [26] OGURA N, RAVICHANDRAN S, SHI T L, et al. First demonstration of ultra-thin glass panel embedded (GPE) package with sheet type epoxy molding compound for 5G/mm-wave applications[J]. International Symposium on Microelectronics, 2019(1): 000202. [27] KAN K, OI Y, FUJII Y. Development of liquid molding compound for fan-out wafer level package[J]. Journal of the Japan Institute of Electronics Packaging, 2020, 23(6): 501-506. [28] OI Y, FUJII Y, HIRAOKA T, et al. Warpage control of liquid molding compound for fan-out wafer level packaging[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018: 967-972. [29] KAMIMURA T, SHIGENO Y, SATO S, et al. Liquid compression mold underfill optimization with low warpage and narrow gap flow[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1226-1230. [30] KAMIMURA T, KAWAMOTO S, HASHIMOTO D, et al. Development of liquid compression molding (LCM) material for low warpage[J]. International Symposium on Microelectronics, 2017, 2017(1): 25-28. [31] JUNG C H, JUNG J P. Recent progress of hybrid bonding and packaging technology for 3D chip integration[J]. Journal Semiconductor & Display Technology, 2023, 22(4): 38-47.  [32] LAU J H. State of the art of Cu-Cu hybrid bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024, 14(3): 376-396. [33] KIM T, LEE J, KIM Y, et al. Thermal improvement of HBM with joint thermal resistance reduction for scaling 12 stacks and beyond[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 767-771.  
  |