[1] 田民波. 电子封装工程[M]. 北京: 清华大学出版社, 2003.  [2] LU D, WONG C P. Materials for Advanced Packaging[M]. Boston: Springer US, 2009. [3] 钟毅. 温度梯度对微焊点界面反应及晶粒取向的影响[D]. 大连: 大连理工大学, 2018. [4] Tu K N. Solder joint technology: materials, properties, and reliability[M]. New York: Springer, 2007. [5] ZHANG L, HAN J G, HE C W, et al. Reliability behavior of lead-free solder joints in electronic components[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(1): 172-190.  [6] LAU J H. Overview and outlook of through-silicon via (TSV) and 3D integrations[J]. Microelectronics International, 2011, 28(2): 8-22. [7] KO C T, CHEN K N. Reliability of key technologies in 3D integration[J]. Microelectronics Reliability, 2013, 53(1): 7-16.  [8] 禹胜林, 王听岳, 崔殿亨. 球栅阵列(BGA)封装器件与检测技术[J]. 电子工艺技术, 2000, 21(1): 10-12.  [9] 王文慧,赵兴科,王世泽,等. BGA封装用钨焊球焊点的热可靠性研究[J]. 电子元件与材料, 2022, 41(9): 974-979, 986. [10] HAN J, MENG Z, JIN X L, et al. Study of early-stage thermal fatigue behavior of Sn-based Cu-cored BGA solder joints[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(17): 1348.  [11] ZHENG Y Z, LIU J C, JI H C, et al. Creep of Sn-0.3Ag-0.7Cu solder in electronic packaging: experiment and simulation[J]. Journal of Materials Research and Technology, 2025, 34: 585-603.  [12] REBAI J H, EL HAMI A, GHENAM S, et al. Fatigue life prediction of BGA solder joint of several alloy compositions under an isothermal harmonic vibration[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2025, 239(4): 1327-1341. [13] JEONG H, MIN K D, LEE C J, et al. Mechanical reliability of Cu cored solder ball in flip chip package under thermal shock test[J]. Microelectronics Reliability, 2020, 112: 113918.  [14] SHOHJI I, SHIRATORI Y, YOSHIDA H, et al. Growth kinetics of reaction layers in flip chip joints with Cu-cored lead-free solder balls[J]. Materials Transactions, 2004, 45(3): 754-758.  [15] CHEN C M, LIN H C. Interfacial reactions and mechanical properties of ball-grid-array solder joints using Cu-cored solder balls[J]. Journal of Electronic Materials, 2006, 35(11): 1937-1947.  [16] YAO Z X, JIANG S, YIN L M, et al. Effects of joint height on the interfacial microstructure and mechanical properties of Cu-cored SAC305 solder joints[J]. Journal of Electronic Materials, 2020, 49(9): 5391-5398.  [17] JEONG H, LEE C J, KIM J H, et al. Electromigration behavior of Cu core solder joints under high current density[J]. Electronic Materials Letters, 2020, 16(6): 513-519.  [18] GHAFFARIAN R, KIM N P. Ball grid array reliability assessment for aerospace applications[J]. Microelectronics Reliability, 1999, 39(1): 107-112.  [19] 李国斌, 令玉林. 甲基磺酸体系电镀铅锡合金工艺的研究[J]. 材料保护, 2006(3): 29-31. [20] CHEN C, WAN C, WANG Y Y. Electrodeposition of tin-lead alloy on a rotating disk electrode in methane sulphonic acid solutions[J]. Transactions of the Institute of Metal Finishing, 1998, 76(2): 54-58.  [21] GAO X, ZHANG Z J, WEI H, et al. Effect of reflow temperature and solder size on Cu-Ni cross-interaction in the Cu/Sn/Ni micro solder joints[J]. Microelectronics International, 2024, 41(1): 9-15.  [22] SONA M, PRABHU K N. The effect of wetting gravity regime on shear strength of SAC and Sn-Pb solder lap joints[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4177-4187. 
  |