中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2020, Vol. 20 ›› Issue (6): 060304 . doi: 10.16257/j.cnki.1681-1070.2020.0611

• 电路设计 • 上一篇    下一篇

基于FPGA的U-Net网络硬件加速系统的实现

梅亚军,王唯佳,彭析竹   

  1. 电子科技大学,成都 610054
  • 接受日期:2020-03-09 出版日期:2020-06-17 发布日期:2020-03-23
  • 作者简介:梅亚军(1995—),男,江苏东台人,硕士研究生,研究方向为人工智能硬件加速器。

Implementation of FPGA-based U-Net Network Hardware Acceleration System

MEI Yajun, WANG Weijia, PENG Xizhu   

  1. University of Electronic Science and Technology of China, Chengdu 610054, China
  • Accepted:2020-03-09 Online:2020-06-17 Published:2020-03-23

摘要: 随着深度学习的快速发展,神经网络算法被广泛应用于图像处理领域。由于硬件算力限制了神经网络的实现与应用,基于FPGA的神经网络硬件加速器相继被提出。U-Net网络作为一种特殊的卷积神经网络,在生物医学图像分割方向具有重要的意义。U-Net网络的运算瓶颈是卷积运算,采用循环展开、循环流水等硬件电路设计方法,通过提高FPGA内部硬件资源利用率增加卷积运算硬件加速器的并行度,提升硬件系统的整体运算性能。最终在Pynq-Z1异构平台上实现了卷积运算硬件加速器的设计,完成了整个U-Net网络的软硬件系统开发。试验表明,整个U-Net网络硬件加速器的运算性能提升为原来的19.690倍,是一种有效的神经网络加速方案。

关键词: FPGA, U-Net网络, 硬件加速, 卷积运算

Abstract: With the rapid development of deep learning, neural network algorithm is widely used in the field of image processing. Since the hardware computation ability has limited the implementation and application of neural networks, FPGA-based neural network hardware accelerators have been proposed one after another. As a special convolutional neural network, U-Net network is of great significance in biomedical image segmentation. The computation bottleneck of U-Net network is the convolution computation unit. The hardware circuit design methods such as loop unrolling and loop pipelining are used to improve the parallelism of convolution computation hardware accelerator and the overall computation performance of hardware system by consuming FPGA internal hardware resources. Finally, convolution computation hardware accelerator design of the U-Net network was realized on the Pynq-Z1 heterogeneous platform, and the software and hardware system development of the entire U-Net network was completed. The experiment shows that the performance of the U-Net hardware accelerator is 19.690 times of the original, which is an effective neural network acceleration scheme.

Key words: FPGA, U-Net network, hardware acceleration, convolution computation

中图分类号: