[1] 刘建华,郭宇锋,黄晓明,等. GaN HEMT场板研究综述[J]. 南京邮电大学学报(自然科学版),2020, 40(1):9-14. [2] 段宝兴,杨银堂,陈敬. F离子注入新型Al0.25Ga0.75N/GaN HEMT器件耐压分析[J]. 物理学报,2012, 61(22): 408-414. [3] KHAN M A, BHATTARAIH A, KUZNIA J N, et al. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction[J]. Applied Physics Letters, 1993, 63(9): 1214-1215. [4] 李金鹏. 基于p-GaN栅的常关型功率器件的研究[D]. 重庆:重庆邮电大学, 2020. [5] KHAN M A, CHEN Q. Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors[J]. Applied Physics Letters, 1996, 68(4): 514-516. [6] CHEN K J, HABERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. [7] OKA T, NOZAWA T. AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications[J]. IEEE Electron Device Letters, 2008, 29(7): 668-670. [8] BIN L, SAADAT O I, PALACIOS T. High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor[J]. IEEE Electron Device Letters, 2010, 31(9): 990-992. [9] CAI Y, ZHOU Y G, CHEN K J, et al. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment[J]. IEEE Electron Device Letters, 2005, 26(7): 435-437. [10] HAMADY S. New concepts for normally-off power gallium nitride (GaN) high electron mobility transistor (HEMT)[D]. Toulouse: University Toulouse III Paul Sabatier, 2014. [11] 何云龙. 氮化物半导体增强型HEMT器件与实现方法研究[D]. 西安:西安电子科技大学, 2017. [12] UEMOTO Y, HIKITA M, UENO H, et al. Gate injection transistor (GIT)-a normally-off AlGaN/GaN power transistor using conductivity modulation[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3393-3399. [13] GRECO G, IUCOLANNO F, ROCCAFORTE F. Review of technology for normally-off HEMTs with p-GaN gate[J]. Materials Science in Semiconductor Processing, 2017, 78: 96-106. [14] OKITA H, KAIFU K, MITA J, et al. High transconductance AlGaN/GaN-HEMT with recessed gate on sapphire substrate[J]. Physica status solidi, 2003, 200(1): 187-190. [15] SHEN F Y, HAO R H, SONG L, et al. Enhancement mode AIGaN/GaN HEMTs by fluorine ion thermal diffusion with high Vth stability[J]. Applied Physics Express, 2019, 12(6): 066501. [16] LIN Y, LIN Y C, LUMBANTORUAN F, et al. A novel digital etch hechnique for p-GaN gate HEMT[C]// 2018 IEEE International Conference on Semiconductor Electronics (ICSE), 2018. [17] JIANG H X, ZHU R Q, LYU Q F, et al. High-voltage p-GaN HEMTs with off-State blocking capability after gate breakdown[J]. IEEE Electron Device Letters, 2019, 40(4): 530-533. [18] HU Q Y, ZENG F M, CHENG W C, et al. Reducing dynamic on-resistance of p-GaN gate HEMTs using dual field plate configurations[C]// 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2020. [19] WEI X, ZHANG X D, SUN C, et al. A novel normally-off laterally coupled p-GaN gate HEMT[C]// 2021 5th IEEE Electron Devices Technology & Manufacturing Conference(EDTM), 2021. [20] JIANG H X, LYU Q F, ZHU R Q, et al.1300 V normally-off p-GaN gate HEMTs on Si with high on-state drain current[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 653-657. [21] CHEN D, YUAN P, ZHAO S, et al. Wide-range-adjusted threshold voltages for E-mode AlGaN/GaN HEMT with a p-SnO cap gate[J]. Science China Materials, 2022, 65(3): 795-802. [22] LI S C, HU Q L, WANG X, et al. Improved interface properties and dielectric breakdown in recessed AlGaN/GaN MOS-HEMTs using HfSiO as gate dielectric[J]. IEEE Electron Device Letters, 2019, 40(2): 295-298. [23] ASUBAR J T, KAWABATA S, TOKUDA H, et al. Enhancement-mode AlGaN/GaN MIS-HEMTs with high Vth and high IDmax using recessed-structure with regrown AlGaN barrier[J]. IEEE Electron Device Letters, 2020, 41(5): 693-696. [24] CAI Y T, ZHANG Y L, LIANG Y, et al. Low ON-state resistance normally-OFF AlGaN/GaN MIS-HEMTs with partially recessed gate and ZrOx charge trapping layer[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4310-4316. [25] REN J, FENG H, TANG C W, et al. A novel 700 V monolithically integrated Si-GaN cascoded field effect transistor[J]. IEEE Electron Device Letters, 2018, 39(3): 394-396. [26] ZHANG J Q, ZHANG W H, WU Y C, et al. Wafer-scale Si–GaN monolithic integrated E-mode cascode FET realized by transfer printing and self-aligned etching technology[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3304-3308. [27] LIU M H, JIN Y F. Fabrication of E-mode all-GaN devices with self-terminated and self-alignment process[C]// 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2021. [28] LING Y, BIN H, MI M H, et al. High-performance enhancement-mode AlGaN/GaN high electron mobility transistors combined with TiN-based source contact ledge and two-step fluorine treatment[J]. IEEE Electron Device Letters, 2018, 39(10): 1544-1547. [29] ZHENG X F, CHEN A S, HAO Z, et al. Degradation mechanism of fluorine treated enhancement-mode AlGaN/GaN HEMTs under high reverse gate bias[C]// 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2020. [30] HAN P C, YAN Z Z, WU C H, et al. Recess-free normally-off GaN MIS-HEMT fabricated on ultra-thin-barrier AlGaN/GaN heterostructure[C]// 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019. [31] WANG Z H, ZHANG Z W, WANG S J, et al. Design and optimization on a novel high-performance ultra-thin barrier AlGaN/GaN power HEMT with local charge compensation trench[J]. Applied Sciences, 2019, 9(15): 9153045. [32] ZHENG Z Y, LI Z, SONG W J, et al. Gallium nitride-based complementary logic integrated circuits[J]. Nature Electron, 2021, 4(8): 595-603. [33] BADER S J, LEE H, CHAUDHURI R, et al. Prospects for wide bandgap and ultrawide bandgap CMOS devices[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4010-4020. 最新录用说明: 此版本为经同行评议被本刊正式录用的文章。其内容、版式可能与正式出版(印刷版)稍有差异,正式出版后此版本会更新,请以正式出版版本为准。本文已确定卷期、页码以及DOI,可以根据DOI引用。 本文尚未正式出版,未经许可,不得转载。
|