[1] LEE K K, LIM D R, KIMERLING L C, et al. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction[J]. Optics Letters, 2001, 26(23): 1888-1890. [2] LEE K K, LIM D R, LUAN H C, et al. Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model[J]. Applied Physics Letters, 2000, 77(11): 1617-1619. [3] 晋玉剑. SOI集成光波导的制备及传输特性研究[D]. 广东: 中北大学, 2012: 20-26. [4] FORESI J S, LIM D R, LING L, et al. Small radius bends and large angle splitters in SOI waveguides[C]// Proceeding of 1997 SPIE Photonics West. USA: SPIE, 1997, 3007: 112-118. [5] AALTO T T, HARJANNE M, KAPULAINEN M, et al. Development of silicon-on-insulator waveguide technology[C]// Integrated Optoelectronic Devices 2004. USA: SPIE, 2004: 81-95. [6] CASSAN E, LAVAL S, LARDENOIS S, et al. On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 460-464. [7] DALDOSSO N, MELCHIORRI M, RIBOLI F, et al. Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line[J]. Journal of Lightwave Technology, 2004, 22(7): 1734-1740. [8] FRANK M, JELINEK M, KUBECEK V, et al. Scanning cutback method for characterization of Bragg fibers[J]. Journal of Lightwave Technology, 2018, 36(11): 2271-2277. [9] 郭进,肖志雄,冯俊波,等. 硅光工艺特殊性分析[J]. 微纳电子与智能制造,2019, 1(3): 48-54. [10] BAUDOT C, SZELAG B, ALLOUTI N, et al. Progresses in 300 mm DUV photolithography for the development of advanced silicon photonic devices[C]// Proceeding of 2015 SPIE Advanced Lithography. USA: SPIE, 2015: 94260D. |