[1] 张亮,TU K N,陈信文,等.近十年中国无铅钎料研究进展[J].中国科学:技术科学, 2016, 46(8):767-790. [2] LI M L, ZHANG L, JIANG N, et al. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review[J]. Materials & Design, 2021, 197:109224. [3] CHIDAMBARAM V, HATTEL J, HALD J. High-temperature lead-free solder alternatives[J]. Microelectronic Engineering, 2010, 88(6):981-989. [4] TATSUYA K, IKUO S, YUSUKE N. Effect of power cycling and heat aging on reliability and IMC growth of Sn-5Sb and Sn-10Sb solder joints[J]. Advances in Materials Science & Engineering, 2018, 2018:4829508. [5] ZENG G, MCDONALD S, NOGITA K. Development of high-temperature solders: Review[J]. Microelectronics Reliability, 2012, 52(7):1306-1322. [6] 赵猛,张亮,熊明月.Sn-Cu系无铅钎料的研究进展及发展趋势[J].材料导报, 2019, 33(15):2467-2478. [7] HASNINE M, TOLLA B, VAHORA N. Microstructural evolution and mechanical behavior of high temperature solders: Effects of high temperature aging[J]. Journal of Electronic Materials, 2017(6):1-11. [8] MOROZUMI A, HOKAZONO H, NISHIMURA Y, et al. Influence of antimony on reliability of solder joints using Sn-Sb binary alloy for power semiconductor modules[J]. Transactions of The Japan Institute of Electronics Packaging, 2015, 8(1):8-17. [9] EL-DALY A A, FAWZY A, MOHAMAD A Z, et al. Microstructural evolution and tensile properties of Sn-5Sb solder alloy containing small amount of Ag and Cu[J]. Journal of Alloys and Compounds, 2011, 509(13):4574-4582. [10] EL-DALY A A, MOHAMAD A Z, FAWZY A, et al. Creep behavior of near-peritectic Sn-5Sb solders containing small amount of Ag and Cu[J]. Materials Science & Engineering: A, 2011, 528(3):1055-1062. [11] EL-DALY A A, SWILEM Y, HAMMAD A E. Creep properties of Sn-Sb based lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009, 471(1-2):98-104. [12] 甘树德,甘贵生,王涛,等. Sb, Bi元素对Sn-22Sb高温钎料合金组织的影响[J].精密成形工程, 2014, 6(3):50-53,63. [13] KAMAL M, GOUDA E S. Decomposition behavior and properties for tin-antimony alloy with bismuth content[J]. Radiation Effects & Defects in Solids, 2006, 161(7): 427-431. [14] GERANMAYEH A R, NAYYERI G, MAHMUDI R. Microstructure and impression creep behavior of lead-free Sn-5Sb solder alloy containing Bi and Ag[J]. Materials Science & Engineering: A, 2012, 547:110-119. [15] MANSOUR M M, SAAD G, WAHAB L A, et al. Indentation creep behavior of thermally aged Sn-5wt%Sb-1.5wt%Ag solder integrated with ZnO nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 8348-8357. [16] MANDOUR M M, FAWZY A, WAHAB L A, et al. Tensile characteristics of Sn–5wt%Sb–1.5wt%Ag reinforced by nano-sized ZnO particles[J]. Journal of Materials Science Materials in Electronics, 2019, 30:4831-4841. [17] DIAS M, COSTA T, ROCHA O, et al. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn-Sb lead-free solder alloys[J]. Materials Characterization, 2015, 106:52-61. [18] GOUDA E S. Effect of solidification conditions on structure and properties of rapidly-solidified Sn-7.5wt%Sb alloy[J]. Materials and Manufacturing Processes, 2007, 22(7):842-845. [19] LEE C, LIN C Y, YEN Y W. The 260°C phase equilibria of the Sn-Sb-Cu ternary system and interfacial reactions at the Sn-Sb/Cu joints[J]. Intermetallics, 2007, 15(8):1027-1037. [20] DELE-AFOLABI T T, HANIM M A A, NORKHAIRUNNISA M, et al. Growth kinetics of intermetallic layer in lead-free Sn-5Sb solder reinforced with multi-walled carbon nanotubes[J]. Journal of Materials Science: Materials in Electronics, 2015, 26:8249-8259. [21] DELE-AFOLABI T T, HANIM M A A, NORKHAIRUNNISA M, et al. Investigating the effect of isothermal aging on the morphology and shear strength of Sn-5Sb solder reinforced with carbon nanotubes[J]. Journal of Alloys and Compounds, 2015, 649:368-374. [22] CURTULO J P, DIAS M, BERTELLI F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates[J]. Journal of Manufacturing Processes, 2019, 48:164-173. [23] HAN B Y, SUN F L, LI T H, et al. Microstructure evolution of Au/SnSb-CuNiAg/(Au)Ni during high temperature aging[J]. Soldering and Surface Mount Technology, 2020, 32(2):57-64. [24] LEE C H, CHEN W T, LIAO C N. Effect of antimony on vigorous interfacial reaction of Sn-Sb/Te couples[J]. Journal of Alloys & Compounds, 2011, 509(16):5142-5146. [25] DIAS M, COSTA T A, SILVA B L, et al. A comparative analysis of microstructural features, tensile properties and wettability of hypoperitectic and peritectic Sn-Sb solder alloys[J]. Microelectronics Reliability, 2018, 81:150-158. [26] SCHOELLER H, BANSAL S, KNOBLOCH A, et al. Microstructure evolution and the constitutive relations of high-temperature solders[J]. Journal of Electronic Materials, 2009, 38(6):802-809. [27] LEDERER M, KOTAS A B, KHATIBI G. A lifetime assessment and prediction method for large area solder joints[J]. Microelectronics Reliability, 2020, 114:113888. [28] SOBHY M, EL-REFAI A M, FAWZY A. Effect of graphene oxide nano-sheets (GONSs) on thermal, microstructure and stress-strain characteristics of Sn-5wt% Sb-1wt% Ag solder alloy[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(3):2347-2359. [29] GERANMAYEH A R, MAHMUDI R, KANGOOIE M. High-temperature shear strength of lead-free Sn-Sb-Ag/Al2O3 composite solder[J]. Materials Science and Engineering: A, 2011, 528:3967-3972. [30] MANSOUR M M, FAWZY A, WAHAB L A, et al. Tensile characteristics of Sn-5wt%Sb-1.5wt%Ag reinforced by nano-sized ZnO particles[J]. Journal of Materials Science Materials in Electronics, 2019, 30:4831-4841. [31] WU M, SU X Y. An investigation on surface tension of Sn-based lead free solders[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(11):8425-8431. [32] 冯丽芳,杨莉,闫焉服,等.Ag和Ni元素对Sn-Sb-Cu无铅钎料熔化温度和铺展性能的影响[J].焊接学报, 2009, 30(5):69-72, 116. [33] 董野峰,李先芬,祖方遒,等.Sn-Sb15无铅焊料熔体结构转变及其对凝固和润湿性的影响[J].金属功能材料, 2013, 20(3):1-5. [34] PARK Y, BANG J H, OH C M, et al. The effect of eutectic structure on the creep properties of Sn-3.0Ag-0.5Cu and Sn-8.0Sb-3.0Ag solders[J]. Multidisciplinary Digital Publishing Institute, 2017, 7(12):540-552. [35] ZHANG L, HE C W, GUO Y H, et al. Development of SnAg-based lead free solders in electronics packaging ScienceDirect[J]. Microelectronics Reliability, 2012, 52(3):559-578. |