[1] MACK C A. Measuring and modeling flare in optical lithography[C]//Optical Microlithography XVI. International Society for Optics and Photonics,Santa Clara,CA,USA. 2003, 5040: 151-161. [2] BOUROV A, LITT L C, ZAVYALOVA L. Impact of flare on CD variation for 248-nm and 193-nm lithography systems[C]//Optical Microlithography XIV, Santa Clara, CA, USA. 2001, 4346: 1388-1393. [3] ZHAO R, DONG L, CHEN R, et al. Impact of mask topography and flare on process window of EUV lithography[C]//International Conference on Extreme Ultraviolet Lithography 2019,Monterey, CA, USA. 2019, 11147: 111471V. [4] FONTAINE B M L, DUSA M V, ACHETA A, et al. Flare and its impact on low-k1 KrF and ArF lithography[C]//Optical Microlithography XV, Santa Clara, CA,USA. 2002, 4691: 44-56. [5] OSAWA M, YAO T, AOYAMA H, et al. Correction for local flare effects approximated with double Gaussian profile in ArF lithography[J]. Journal of Vacuμm Science & Technology B: Microelectronics and Nanometer Structures, 2003, 21(6): 2806-2809. [6] 黄振芬,曹益平,陈德良,等. 不同线宽结构杂散光Kirk模型分析[J]. 强激光与粒子束, 2012, 24(8): 1775-1779. [7] ZHENG Z, YANG Z Y, SHAO C, et al. The monitor strategies of lens flare for Nikon ArF and KrF scanner machines: Simulated results and discussion[C]//2019 China Semiconductor Technology International Conference (CSTIC), Shanghai, China. IEEE, 2019: 1-3. [8] CHEN D L, CAO Y P, HUANG Z F. Theoretical explanation and improvement to the flare model of lithography based on the Kirk test[J]. Chinese Physics Letters, 2011, 28(6): 068503. [9] 林若兵,魏巍,冯倩,等. 微波和高温器件的一种空气桥互连方法[J]. 半导体学报, 2008(2): 352-355. [10] 李肖,陈堂胜,李忠辉,等. AlGaN/GaN HEMT的B+注入隔离[J]. 固体电子学研究与进展, 2007(3): 325-328. [11] LEVINSON H J. Principles of lithography[M]. 3rd ed. Bellingham, Washington:SPIE press, 2005:17-24. |