[1] SUGIURA K, IWASHIGE T, TSURUTA K, et al. Reliability evaluation of SiC power module with sintered Ag die attach and stress-relaxation structure[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(4): 609-615. [2] CHEN C T, CHOE C, KIM D, et al. Lifetime prediction of a SiC power module by micron/submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature[J]. Journal of Electronic Materials, 2021, 50(3): 687-698 [3] HUANG X G, WANG Y C, ZHU Q H, et al. Thermal creep and fatigue failure of the sintered silver solder in a SiC-IGBT module under power cycling[J]. Engineering Failure Analysis, 2023, 154: 107625. [4] NING P F, LIU J, WANG D D, et al. Assessing the fatigue life of SiC power modules in different package structures[J]. IEEE Access, 2021, 9: 12074-12082. [5] SUBBARAYAN G, LI Y, MAHAJAN R L. Reliability simulations for solder joints using stochastic finite element and artificial neural network models[J]. Journal of Electronic Packaging, 1996, 118(3): 148-156. [6] CHOU P H, CHIANG K N, LIANG S Y. Reliability Assessment of wafer level package using artificial neural network regression model[J]. Journal of Mechanics, 2019, 35(6): 829-837. [7] CHEN Z W, ZHANG Z, DONG F, et al. A hybrid finite element modeling: Artificial neural network approach for predicting solder joint fatigue life in wafer-level chip scale packages[J]. Journal of Electronic Packaging, 2021, 143(1): 011001. [8] YUAN C C A, LEE C C. Solder joint reliability modeling by sequential artificial neural network for glass wafer level chip scale package[J]. IEEE Access, 2020, 8: 143494-143501. [9] AHSAN M, HON S T, BATUNLU C, et al. Reliability assessment of IGBT through modelling and experimental testing[J]. IEEE Access, 2020, 8: 39561-39573. [10] 代岩伟, 秦飞, 于鹏举, 等. 基于数据驱动的电子封装焊点疲劳寿命预测方法研究进展与挑战[J]. 微电子学与计算机, 2023, 40(11): 43-52. [11] ENGELMAIER W. Fatigue life of leadless chip carrier solder joints during power cycling[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1983, 6(3): 232-237. [12] PRAJAPATI G L, PATLE A. On performing classification using SVM with radial basis and polynomial kernel functions[C]//2010 3rd International Conference on Emerging Trends in Engineering and Technology, Goa, 2010. [13] FUREY T S, CRISTIANINI N, DUFFY N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000, 16(10): 906-914. [14] ZHOU Z H. Machine learning[M]. Singapore: Springer Singapore, 2021. [15] CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. ACM transactions on intelligent Systems and Technology (TIST), 2011, 2(3): 1-39. [16] SU M, PENG H, YUAN M, et al. Identification of the interfacial cohesive law parameters of FRP strips externally bonded to concrete using machine learning techniques[J]. Engineering Fracture Mechanics, 2021, 247: 107643. [17] WU J H, YANG H, ZHANG Y. The research of low temperature sintering nano-sliver paste based on Anand model[C]//Proceedings of the International Symposium on Big Data and Artificial Intelligence, Hong Kong, 2018. [18] YU H T, QIN F, DAI Y W. Porosity effect on fatigue life of sintered silver during thermal cycling[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, 2022. [19] 陆国权, 刘文, 梅云辉. 双面散热SiC MOSFET模块的封装结构强度设计[J]. 电工电能新技术, 2018, 37(10): 32-38. [20] CHEN G, ZHANG Z S, MEI Y H, et al. Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint[J]. Mechanics of Materials, 2014, 72: 61-71. [21] CHAUHAN P, OSTERMAN M, LEE S W R, et al. Critical review of the engelmaier model for solder joint creep fatigue reliability[J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(3): 693-700. [22] LONG X, LU C H, SU Y T, et al. Machine learning framework for predicting the low cycle fatigue life of lead-free solders[J]. Engineering Failure Analysis, 2023, 148: 107228. |