[1] 马文君, 蔡跃洲. 新一代信息技术能否成为动力变革的重要支撑?——基于新兴产业分类与企业数据挖掘的实证分析[J]. 改革, 2020(2): 40-56. [2] YANG C, YE K, Tan M. A 0.5-V capless LDO with 30-dB PSRR at 10-kHz using a lightweight local generated supply[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(10): 1785-1789. [3] GUPTA V, RINCON-MORA G A. A 5 mA 0.6 μm CMOS miller-compensated LDO regulator with-27 dB worst-case power-supply rejection using 60 pF of on-chip capacitance[C]// 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, 2007. [4] LAVALLE-AVILES F, TORRES J, SáNCHEZ-SINENCIO E. A high power supply rejection and fast settling time capacitor-less LDO[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 474-484. [5] LIM Y, LEE J, PARK S, et al. An external-capacitor-less low-dropout regulator with less than ?36 dB PSRR at all frequencies from 10 kHz to 1 GHz using an adaptive supply-ripple cancellation technique to the body-gate[C]// 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, 2017. [6] WANG W, CHI B Y. A wideband high PSRR capacitor-less LDO with adaptive DC level shift and bulk-driven feed-forward techniques in 28 nm CMOS[C]// 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, 2019. [7] EL-NOZAHI M, AMER A, TORRES J, et al. High PSR low drop-out regulator with feed-forward ripple cancellation technique[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 565-577. [8] YANG B D, DROST B, RAO S, et al. A high-PSR LDO using a feedforward supply-noise cancellation technique[C]// 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2011. [9] JOSHI K, MANANDHAR S, BAKKALOGLU B. A 5.6 μA wide bandwidth, high power supply rejection linear low-dropout regulator with 68 dB of PSR up to 2 MHz[J]. IEEE Journal of Solid-State Circuits , 2020, 55(8): 2151-2160. [10] YUK Y S, JUNG S, KIM C, et al. PSR enhancement through super gain boosting and differential feed-forward noise cancellation in a 65-nm CMOS LDO regulator[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(10): 2181-2191. [11] JIANG J Z, SHU W, CHANG J S. A 65-nm CMOS low dropout regulator featuring >60-dB PSRR over 10-MHz frequency range and 100-mA load current range[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8): 2331-2342. [12] HIPOLITO C R, SILVERIO A, NUESTRO R. High PSR LDO with adaptive-EFFRC for wearable biomedical application[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, 2021: 1-5. [13] GUO T, KANG W, ROH J. A 0.9-μA quiescent current high PSRR low dropout regulator using a capacitive feed-forward ripple cancellation technique[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10): 3139-3149. [14] HENG S, PHAM C K. A low-power high-PSRR low-dropout regulator with bulk-gate controlled circuit[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2010, 57(4): 245-249. [15] 屈柯柯, 祝乃儒, 张海波. 一种集成于BUCK芯片的5 V低压差线性稳压器[J]. 电子与封装, 2021, 21(7) : 070301. [16] 闫振林, 温芝权, 张兵, 等. 用于网络处理芯片的片上电源产生电路设计[J]. 电子与封装, 2022, 22(10): 100304. [17] HOON S K, CHEN S, MALOBERTI F, et al. A low noise, high power supply rejection low dropout regulator for wireless system-on-chip applications[C]// Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, San Jose, 2005. [18] SHAO L J, XI R J, DING Y, et al. A low noise high PSR LDO based on N-type flipped voltage follower[C]// 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, 2022. [19] MAO X Y, LU Y, MARTINS R P. A 1-A switching LDO with 40-mV dropout voltage and fast DVS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(9): 3454-3458. [20] LI G X, QIAN H M, GUO J P, et al. Dual active-feedback frequency compensation for output-capacitorless LDO with transient and stability enhancement in 65-nm CMOS[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 415-429. [21] WANG Y Q, SHU Z, ZHANG Q S, et al. A low-voltage and power-efficient capless LDO based on the biaxially driven power transistor technique for respiration monitoring system[J]. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16(6): 1153-1165. |