[1] JUNG S, LEE H, MYUNG S, et al. A crossbar array of magnetoresistive memory devices for in-memory computing[J]. Nature, 2022, 601: 211-216. [2] WANG D W, LIN C T, CHEN G K, et al. DIMC: 2219TOPS/W 2569F2/b digital in-memory computing macro in 28 nm based on approximate arithmetic hardware[C]// 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, 65: 266-268. [3] HU H W, WANG W C, CHEN C K, et al. A 512 Gb in-memory-computing 3D-NAND flash supporting similar-vector-matching operations on edge-AI devices[C]// 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, 65: 138-140. [4] SHI T, WANG R, WU Z H, et al. A review of resistive switching devices: performance improvement, characterization, and applications[J]. Small Structures, 2021, 2(4): 2000109. [5] PAN F, GAO S, CHEN C, et al. Recent progress in resistive random access memories: materials, switching mechanisms, and performance[J]. Materials Science and Engineering R: Reports, 2014, 83(1): 1-59. [6] KUNDALE S S, KAMBLE G U, PATIL P P, et al. Review of electrochemically synthesized resistive switching devices: memory storage, neuromorphic computing, and sensing applications[J]. Nanomaterials, 2023, 13(12): 1879. [7] CHOI S, YANG J, WANG G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing[J]. Advanced Materials, 2020, 32(51): e2004659. [8] WANG Z R, WU H Q, BURR G W, et al. Resistive switching materials for information processing[J]. Nature Reviews Materials, 2020, 5(3): 173-195. [9] WASER R, DITTMANN R, STAIKOV G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges[J]. Advanced Materials, 2009, 21(25/26): 2632-2663. [10] JO S H, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 2010, 10(4): 1297-1301. [11] MARTIN L W, RAPPE A M. Thin-film ferroelectric materials and their applications[J]. Nature Reviews Materials, 2017, 2(2): 16087. [12] BERGER L. Emission of spin waves by a magnetic multilayer traversed by a current[J]. Physical Review B, Condensed Matter, 1996, 54(13): 9353-9358. [13] SUN F Q, LU Q F, FENG S M, et al. Flexible artificial sensory systems based on neuromorphic devices[J]. ACS Nano, 2021, 15(3): 3875-3899. [14] WAN Q Z, SHARBATI M T, ERICKSON J R, et al. Emerging artificial synaptic devices for neuromorphic computing[J]. Advanced Materials Technologies, 2019, 4(4): 1900037. [15] CHEN H, LI H L, MA T, et al. Biological function simulation in neuromorphic devices: from synapse and neuron to behavior[J]. Science and Technology of Advanced Materials, 2023, 24(1): 2183712. [16] SOKOLOV A, ALI M, LI H, et al. Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics[J]. Advanced Electronic Materials, 2021, 7(2): 2000866. [17] WANG Z R, JOSHI S, SAVEL’EV S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials, 2017, 16(1): 101-108. [18] ILYAS N, LI D Y, LI C M, et al. Analog switching and artificial synaptic behavior of Ag/SiOx: Ag/TiOx/p++-Si memristor device[J]. Nanoscale Research Letters, 2020, 15(1): 30. [19] LEE D H, PARK H, CHO W J. Implementation of highly stable memristive characteristics in an organic-inorganic hybrid resistive switching layer of chitosan-titanium oxide with microwave-assisted oxidation[J]. Molecules, 2023, 28(13): 5174. [20] EBONG I E, MAZUMDER P. CMOS and memristor-based neural network design for position detection[J]. Proceedings of the IEEE, 2012, 100(6): 2050-2060. [21] ISMAIL M, CHAND U, MAHATA C, et al. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing[J]. Journal of Materials Science & Technology, 2022, 96: 94-102. [22] MADADI ASL M, RAMEZANI AKBARABADI S. Voltage-dependent plasticity of spin-polarized conductance in phenyl-based single-molecule magnetic tunnel junctions[J]. PLoS One, 2021, 16(9): e0257228. [23] LI Y, ZHONG Y P, XU L, et al. Ultrafast synaptic events in a chalcogenide memristor[J]. Scientific Reports, 2013, 3: 1619. [24] NANDAKUMAR S R, RAJENDRAN B. Bio-mimetic synaptic plasticity and learning in a sub-500 mV Cu/SiO2/W memristor[J]. Microelectronic Engineering, 2020, 226: 111290. [25] YOON C, OH G, KIM S, et al. Implementation of threshold- and memory-switching memristors based on electrochemical metallization in an identical ferroelectric electrolyte[J]. NPG Asia Materials, 2023, 15: 33. [26] DU C, MA W, CHANG T, et al. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics[J]. Advanced Functional Materials, 2015, 25(27): 4290-4299. [27] SANGMIN Y, WU Y T, YONGMO P, et al. Tuning resistive switching behavior by controlling internal ionic dynamics for biorealistic implementation of synaptic plasticity[J]. Advanced Electronic Materials, 2022, 8(8): 2101025. [28] ABBAS H, ABBAS Y, HASSAN G, et al. The coexistence of threshold and memory switching characteristics of ALD HfO2 memristor synaptic arrays for energy-efficient neuromorphic computing[J]. Nanoscale, 2020, 12(26): 14120-14134. [29] WANG Z Q, ZENG T, REN Y Y, et al. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices[J]. Nature Communications, 2020, 11: 1510. [30] XIONG J, YANG R, SHAIBO J, et al. Bienenstock, Cooper, and Munro learning rules realized in second-order memristors with tunable forgetting rate[J]. Advanced Functional Materials, 2019, 29(9): 1807316. [31] WU Q T, WANG H, LUO Q, et al. Full imitation of synaptic metaplasticity based on memristor devices[J]. Nanoscale, 2018, 10(13): 5875-5881. [32] SANGWAN V K, LEE H S, BERGERON H, et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide[J]. Nature, 2018, 554: 500-504. [33] TANG J S, YUAN F, SHEN X K, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges[J]. Advanced Materials, 2019, 31(49): e1902761. [34] FLETCHER A. Action potential: generation and propagation[J]. Anaesthesia & Intensive Care Medicine, 2011, 12(6): 258-262. [35] ZHANG X M, WANG W, LIU Q, et al. An artificial neuron based on a threshold switching memristor[J]. IEEE Electron Device Letters, 2018, 39(2): 308-311. [36] INDIVERI G, LINARES-BARRANCO B, HAMILTON T J, et al. Neuromorphic silicon neuron circuits[J]. Frontiers in Neuroscience, 2011, 5: 73. [37] PICKETT M D, MEDEIROS-RIBEIRO G, WILLIAMS R S. A scalable neuristor built with Mott memristors[J]. Nature Materials, 2013, 12: 114-117. [38] YI W, TSANG K K, LAM S K, et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons[J]. Nature Communications, 2018, 9: 4661. [39] WANG T, WANG X X, WEN J, et al. A bio-inspired neuromorphic sensory system[J]. Advanced Intelligent Systems, 2022, 4(7): 2200047. [40] ZHANG X M, WU Z H, LU J K, et al. Fully memristive SNNs with temporal coding for fast and low-power edge computing[C]// 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020. [41] YUAN R, TIW P J, CAI L, et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface[J]. Nature Communications, 2023, 14: 3695. [42] ZHANG X M, YANG J J, LIU Q, et al. Experimental demonstration of conversion-based SNNs with 1T1R Mott neurons for neuromorphic inference[C]// 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019. [43] LI X Y, TANG J S, ZHANG Q T, et al. Power-efficient neural network with artificial dendrites[J]. Nature Nanotechnology, 2020, 15: 776-782. |