[1] 韦朝龙. 化学镀制备自剥离超薄铜箔与石墨烯/铜复合箔的机理及应用研究[D]. 南昌: 南昌大学, 2021. [2] ZHOU B X, BONAKDARPOUR A, STO?EVSKI I, et al. Modification of Cu current collectors for lithium metal batteries–A review[J]. Progress in Materials Science, 2022, 130: 100996. [3] JANG S, JEONG H, YUH M, et al. Effect of surfactant on package substrate in chemical mechanical planarization[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(1): 59-63. [4] 黄崛起. 载体超薄铜箔的制备及其剥离层形成过程电化学机理研究[D]. 赣州: 江西理工大学, 2012. [5] 祝大同. 印制电路板用高端电子铜箔及其技术新发展(下)[J]. 印制电路信息, 2022, 30(4): 7-15. [6] 祝大同. 世界及我国PCB用铜箔产业发展现况[J]. 印制电路信息, 2016, 24(9): 12-16. [7] 龚永林. PCB制造基本工艺路线: 减成法与加成法[J]. 印制电路信息, 2023, 31(10): 61-62. [8] 杜芬. HDI高铜厚精细线路制作关键技术研究[J]. 科技创新与应用, 2018, 8(26): 21-22. [9] TAN H W, TRAN T, CHUA C K. A review of printed passive electronic components through fully additive manufacturing methods[J]. Virtual and Physical Prototyping, 2016, 11(4): 271-288. [10] TAKANO T, KUDO H, TANAKA M, et al. Submicron-scale Cu RDL pattering based on semi-additive process for heterogeneous integration[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 94-100. [11] 廉治华, 樊廷慧, 黄双双. 基于mSAP技术的精细线路间渗镀短路改善研究[J]. 印制电路信息, 2023, 31(S2): 229-240. [12] 文雯. 高频超薄载体铜箔制作及应用研究[D]. 成都: 电子科技大学, 2022. [13] 于鹏鹏. 印制电路可剥离复合载体铜箔制作技术及应用研究[D]. 成都: 电子科技大学, 2024. [14] 田军涛. 压延铜箔生产工艺概述[J]. 上海有色金属, 2014, 35(4): 170-176, 182. [15] 徐千惠, 罗辉, 俞俊, 等. 覆铜板用3 oz压延厚铜箔产品性能研究[C]//第二十四届中国覆铜板技术研讨会论文集. 桐乡, 浙江, 中国, 2023: 565-572. [16] ZHANG Y B, ZHANG T, SHI H B, et al. Electroless plating cycle process for high-conductivity flexible printed circuits[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(35): 11991-12004. [17] FRITZ N, KOO H C, WILSON Z, et al. Electroless deposition of copper on organic and inorganic substrates using a Sn/Ag catalyst[J]. Journal of the Electrochemical Society, 2012, 159(6): D386-D392. [18] KIM K, KIM S, JUNG G H, et al. Extremely flat metal films implemented by surface roughness transfer for flexible electronics[J]. RSC Advances, 2018, 8(20): 10883-10888. [19] DONG W J, KIM S, PARK J Y, et al. Ultrafast and chemically stable transfer of Au nanomembrane using a water-soluble NaCl sacrificial layer for flexible solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30477-30483. [20] SCHAPER C D. Patterned transfer of metallic thin film nanostructures by water-soluble polymer templates[J]. Nano Letters, 2003, 3(9): 1305-1309. [21] 任利娜, 侯智敏, 牛靖, 等. 电解铜箔用阴极辊的研究进展及发展趋势[J]. 精密成形工程, 2020, 12(2): 84-92. [22] YIN X Q, PENG L J, KAYANI S, et al. Mechanical properties and microstructure of rolled and electrodeposited thin copper foil[J]. Rare Metals, 2016, 35(12): 909-914. [23] 冯绍彬, 苏畅. 酸性镀铜工艺硫酸过量引起的故障分析[J]. 电镀与涂饰, 2011, 30(4): 13-14. [24] 余威懿. 锂离子电池用电解铜箔的制备工艺与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [25] DOW W P, HUANG H S. Roles of chloride ion in microvia filling by copper electrodeposition[J]. Journal of the Electrochemical Society, 2005, 152(2): C67. [26] GUO L F, LI S P, HE Z B, et al. Electroplated copper additives for advanced packaging: a review[J]. ACS Omega, 2024, 9(19): 20637-20647. [27] 廖超慧. 印制电路板电镀铜填盲孔整平剂的研究[D]. 重庆: 重庆大学, 2019. [28] TSAI W C, WAN C-C, WANG Y Y. Frequency effect of pulse plating on the uniformity of copper deposition in plated through holes[J]. Journal of the Electrochemical Society, 2003, 150(5): C267. [29] LEE Y K, O’KEEFE T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM, 2002, 54(4): 37-41. [30] DUTRA A J B, O’KEEFE T J. Copper nucleation on titanium for thin film applications[J]. Journal of Applied Electrochemistry, 1999, 29(10): 1217-1227. [31] LU L L, LIU H T, WANG Z D, et al. Advances in electrolytic copper foils: fabrication, microstructure, and mechanical properties[J]. Rare Metals, 2025, 44(2): 757-792. [32] VERBRUGGEN F, FISET E, BONIN L, et al. Stainless steel substrate pretreatment effects on copper nucleation and stripping during copper electrowinning[J]. Journal of Applied Electrochemistry, 2021, 51(2): 219-233. [33] SUN X T, LIN H S, CHEN X S, et al. Comparative study on electrocrystallization of calcium phosphate ceramics on commercially pure titanium and selective laser melting titanium[J]. Materials Letters, 2017, 192: 92-95. [34] AHMADIKIA B, WANG L Y, KUMAR M A, et al. Grain boundary slip-twin transmission in titanium[J]. Acta Materialia, 2023, 244: 118556. [35] ZHENG J X, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. [36] GREUL T, COMENDA C, PREIS K, et al. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions[J]. Electrochimica Acta, 2013, 113: 797-802. [37] WANG Y F, REDDY R G, WANG R G. Dendrite-free Al recycling via electrodeposition using ionic liquid electrolytes: the effects of deposition temperature and cathode surface roughness[J]. Journal of Cleaner Production, 2021, 287: 125043. [38] ZENG Z Y, BARAI P, LEE S Y, et al. Electrode roughness dependent electrodeposition of sodium at the nanoscale[J]. Nano Energy, 2020, 72: 104721. [39] 任忠文. 中国铜箔的创业[J]. 印制电路信息, 2000, 8(12): 7-8. [40] RHO H, PARK M, LEE S, et al. A graphene superficial layer for the advanced electroforming process[J]. Nanoscale, 2016, 8(25): 12710-12714. [41] PENG H R, JIAN Z Y, LIU C X, et al. Uncovering the softening mechanism and exploring the strengthening strategies in extremely fine nanograined metals: a molecular dynamics study[J]. Journal of Materials Science & Technology, 2022, 109: 186-196. [42] LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324(5925): 349-352. [43] 唐云志, 孙桢, 樊小伟, 等. 极薄多层结构型纳米孪晶铜箔及其制备方法和应用: CN114908386B[P]. 2024-05-28. [44] 卢磊, 程钊, 陈祥成. 一种纳米孪晶铜箔及其制备方法、以及电路板和集电体: CN114232037B[P]. 2023-03-28. [45] FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331(6024): 1587-1590. [46] ROLAND T, RETRAINT D, LU K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta Materialia, 2006, 54(11): 1949-1954. [47] LIU W, LI G, WANG Y K, et al. Facile dynamic current deposition of high tensile gradient Cu foil with (110) preferred orientation[J]. Science China Materials, 2023, 66(2): 597-602. [48] DE CUSMINSKY J B. The role of stacking fault energy in metal electrodeposition[J]. Scripta Metallurgica, 1976, 10(12): 1071-1073. [49] BROWN D A, MORGAN S, PELDZINSKI V, et al. Crystal growth patterns in DC and pulsed plated galvanic copper films on (111), (100) and (110) copper surfaces[J]. Journal of Crystal Growth, 2017, 478: 220-228. [50] DE CUSMINSKY J B, WILMAN H. Growth and structure of single-crystal electrodeposits of copper; a systematic electron-diffraction study[J]. Electrochimica Acta, 1972, 17(2): 237-246. [51] KELSO M V, TUBBESING J Z, CHEN Q Z, et al. Epitaxial electrodeposition of chiral metal surfaces on silicon(643)[J]. Journal of the American Chemical Society, 2018, 140(46): 15812-15819. [52] LI X G, ZHANG Z H, ZHANG Z B, et al. Production of single-crystal Cu plates by electrodeposition on high-index Cu foils[J]. Science Bulletin, 2023, 68(15): 1611-1615. [53] KAO Y J, LI Y J, SHEN Y, et al. Significant hall-petch effect in micro-nanocrystalline electroplated copper controlled by SPS concentration[J]. Scientific Reports, 2023, 13(1): 428. [54] CHEN P X, LI C Y, HAN S L, et al. Abnormal grain growth of (110)-oriented perpendicular nanotwinned copper into ultra-large grains at low temperatures[J]. Journal of Materials Science & Technology, 2024, 203: 61-65. [55] CHU H C, TUAN H Y. High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector[J]. Journal of Power Sources, 2017, 346: 40-48. [56] ZHANG X J, DONG P Y, ZHANG B G, et al. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles[J]. Journal of Alloys and Compounds, 2016, 671: 465-472. [57] RAMALINGAM S, MURALIDHARAN V S, SUBRAMANIA A. Electrodeposition and characterization of Cu-TiO2 nanocomposite coatings[J]. Journal of Solid State Electrochemistry, 2009, 13(11): 1777-1783. [58] ARAI S, SAITO T, ENDO M. Cu-MWCNT composite films fabricated by electrodeposition[J]. Journal of the Electrochemical Society, 2010, 157(3): D147. [59] SONG G S, WANG Z C, GONG Y N, et al. Direct determination of graphene amount in electrochemical deposited Cu-based composite foil and its enhanced mechanical property[J]. RSC Advances, 2017, 7(3): 1735-1742. [60] ZHANG Y S, LIU Y, TANG Y Z, et al. Preparation of ultra-thin sandwich Cu-Cu/CNTs-Cu composite foil with high tensile strength by electrodeposition[J]. Journal of Electroanalytical Chemistry, 2022, 918: 116495.
|