[1] 黄建. 三维集成微波组件技术: 进展与展望[J]. 电讯技术, 2023, 63(1): 137-144. [2] 马书英, 付东之, 刘轶, 等. 硅通孔三维互连与集成技术[J]. 电子与封装, 2024, 24(6): 060109. [3] 孙浩洋, 姬峰, 冯青华, 等. 面向快速散热的HTCC基板微流道性能研究[J]. 电子与封装, 2024, 24(7): 070203. [4] XU Z, HAO C X, XU K W, et al. A compact Ku-band active electronically steerable antenna with low-cost 3D T/R Module[J]. Wireless Communications & Mobile Computing, 2019, 5287679. [5] LI Z Q, SUN H J, WU H J, et al. An ultra-wideband compact TR module based on 3-D packaging[J]. Electronics, 2021, 10(12): 1435. [6] 程浩, 陈明祥, 罗小兵, 等. 电子封装陶瓷基板[J]. 现代技术陶瓷, 2019, 40(4): 265-292. [7] 王卿. 内嵌微流道DPC陶瓷基板制备关键技术研究[D]. 武汉: 华中科技大学, 2023. [8] LI S, WANG X X, LIU Z Y, et al. Corrosion behavior of Sn-based lead-free solder alloys: a review[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9076-9090. [9] LIU Y X, LU Y, TU K N. Low temperature interfacial reaction in 3D IC nanoscale materials[J]. Materials Science and Engineering: R: Reports, 2022, 151: 100701. [10] LIM D F, WEI J, LEONG K C, et al. Cu passivation for enhanced low temperature (≤300 ℃) bonding in 3D integration[J]. Microelectronic Engineering, 2013, 106: 144-148. [11] PARK M, BAEK S, KIM S, et al. Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics[J]. Applied Surface Science, 2015, 324: 168-173. [12] SUGA T, HE R, VAKANAS G, et al. 3D microelectronic packaging: from fundamentals to applications [M]. 2nd ed. Cham: Springer International Publishing. 2017: 129-155. [13] NIU T J, XU K, SHEN C, et al. In situ study on Cu-to-Cu thermal compression bonding[J]. Crystals, 2023, 13(7): 989. [14] SINGH C, KRISHNASWAMY H, PARDHASARADHI S P, et al. Influence of additives induced microstructural parameters on mechanical behavior of (111)-oriented nanotwinned microcrystalline copper[J]. Materials Science and Engineering: A, 2023, 877: 145150. [15] LU L, SHEN Y, CHEN X, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422-426. [16] LIU C M, LIN H W, CHU Y C, et al. Low-temperature direct copper-to-copper bonding enabled by creep on highly (111)-oriented Cu surfaces[J]. Scripta Materialia, 2014, 78: 65-68. [17] JUANG J-Y, LU C L, CHEN K-J, et al. Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient[J]. Scientific Reports, 2018, 8: 13910.
|