中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2026, Vol. 26 ›› Issue (1): 010201 . doi: 10.16257/j.cnki.1681-1070.2026.0001

• 封装、组装与测试 •    下一篇

基于晶体塑性有限元的铜-铜键合结构热疲劳行为研究

周聪林1,雷鸣奇2,姚尧1,2   

  1. 1. 西安建筑科技大学理学院,西安 710055;2. 西北工业大学力学与交通运载工程学院,西安 710072
  • 收稿日期:2025-04-04 出版日期:2026-01-29 发布日期:2025-06-10
  • 作者简介:周聪林(1999—),男,四川成都人,硕士研究生,主要研究方向为电子封装可靠性。

Investigation of Thermal Fatigue Behavior in Cu-Cu Bonding Structures Based on Crystal Plasticity Finite Element Method

ZHOU Conglin1, LEI Mingqi2, YAO Yao1,2   

  1. 1. School of Science, Xi’anUniversity of Architecture and Technology, Xi’an 710055, China; 2. School of Mechanics and Transportation Engineering,Northwestern Polytechnical University, Xi’an 710072, China
  • Received:2025-04-04 Online:2026-01-29 Published:2025-06-10

摘要: 在后摩尔时代,先进三维封装是实现芯片计算能力和存储密度持续提升的重要出路。铜-铜(Cu-Cu)键合是三维封装的关键技术,一种常见的失效模式是材料间热膨胀系数失配引发的热应力问题。基于晶体塑性理论,建立了一个考虑温度效应的本构模型,并对参数进行校准。基于Voronoi算法,建立了Cu-Cu键合的三维代表性体积单元模型,引入累积塑性应变能密度作为疲劳指标参数,用于预测疲劳裂纹萌生。结果表明,几何不连续性与位错塞积效应都会造成应力集中,且两者存在协同增强作用。累积塑性应变能密度可以对Cu-Cu键合的4种破坏位置实现有效预测,键合界面中的杂质/缺陷会加速Cu-Cu键合失效。

关键词: 先进三维封装, 铜-铜键合, 晶体塑性, 有限元分析, 热疲劳

Abstract: In the post-Moore's Law era, advanced 3D packaging is an important way to achieve continuous improvement in chip computing power and storage density. Cu-Cu bonding is a critical technology in 3D packaging, and one of its common failure modes is the thermal stress problem caused by the mismatch in coefficient of thermal expansion (CTE) between materials. Based on the crystal plasticity theory, a temperature effects constitutive model is developed and the parameters are calibrated. Based on the Voronoi algorithm, a 3D representative volume element (RVE) model of the Cu-Cu bonding is established, and the cumulative plastic strain energy density is introduced as a fatigue indicator parameter (FIP) to predict the fatigue crack initiation. The results show that both geometric discontinuities and dislocation pile-up effect can cause stress concentration, and there is a synergistic enhancement effect between them. The cumulative plastic strain energy density can effectively predict the four failure locations of Cu-Cu bonding, while impurities/defects in the bonding interface can accelerate the failure of Cu-Cu bonding.

Key words: advanced 3D packaging, Cu-Cu bonding, crystal plasticity, finite element analysis, thermal fatigue

中图分类号: