[1] 柏松,李士颜,杨晓磊,等. 高压大功率碳化硅电力电子器件研制进展[J]. 科技导报, 2021, 39(14): 56-62. [2] 陈明会,王春宁,武浩. 碳化硅电力半导体器件在现代电力系统的应用及展望[J]. 通信电源技术, 2018, 35(1): 11-13. [3] 段卓琳,张栋,范涛. SiC电机驱动系统传到电磁干扰建模及预测[J]. 电工技术学报, 2020, 35(22): 4726-4738. [4] ZHOU H, YE C, ZHAN X, et al. Designing a SiC MOSFETs gate driver with high dv/dt immunity and rapid short circuit protection for xEV drivetrain inverter[C]// 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). 2019. [5] LIU T, NING R, WONG T T Y, et al. Modeling and analysis of SiC MOSFET switching oscillations[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2017, 4(3):747-756. [6] CAMACHO A P, SALA V, GHORBANI H, et al. A novel active gate driver for improving SiC MOSFET switching trajectory[J]. IEEE Transactions on Industrial Electronics, 2017, 64: 9032-9042. [7] YANG Y, WEN Y, GAO Y. A novel active gate driver for improving switching performance of high-power SiC MOSFET modules[J]. IEEE Transactions on Power Electronics, 2019,34:7775-7787. [8] LIU C, ZHANG Z, LIU Y, et al. Smart self-driving multilevel gate driver for fast switching and crosstalk suppression of SiC MOSFETs[J]. IEEE Journal of Emerging and selected Topics in Power Electronics, 2020,8:442-453. [9] HE Q, ZHU Y, ZHANG H, et al. A multilevel gate driver of SiC MOSFETs for mitigating coupling noise in bridge-leg converter[J]. IEEE Transactions on Electromagnetic Compatibility, 2019,61:1988-1996. [10] DYMOND H C P, LIU D, WANG J, et al. Multi-level active gate driver for SiC MOSFETs[C]. 2017 IEEE Energy Conversion Congress and Exposition, 2017: 5107-5112. [11] SUKHATME Y, TITUS J, NAYAK P, et al. Digitally controlled active gate driver for SiC MOSFET based induction motor drive switching at 100 kHz[C]// 2017 IEEE Transportation Electrification Conference (ITEC-India), 2017: 1-5. [12] ZHAO S, DEARIEN A, WU Y, et al. Adaptive Multi-Level Active Gate Drivers for SiC Power Devices[J]. IEEE Transactions on Power Electronics, 2020,35: 1882-1898. [13] YANG Y, WANG Y, WEN Y. An active gate driver for improving switching performance of SiC MOSFET[C] // 2018 7th International Symposium on Next Generation Electronics (ISNE), 2018: 1-4. [14] ZENG Z, LI X. Comparative study on multiple degrees of freedom of gate drivers for transient behavior regulation of SiC MOSFET[J]. IEEE Transactions on Power Electronics, 2018,33: 8754-8763. [15] LIU C, LEI Q. Smart current source gate driver for fast switching and cross-talk suppression of SiC MOSFET[C]// 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019: 2734-2739. [16] ZHANG B, XIE S, XU J, et al. A magnetic coupling based gate driver for crosstalk suppression of SiC MOSFETs[J]. IEEE Transactions on Industrial Electronics, 2017, 64: 9052-9063. [17] PILLI N K, CHAUHAN A K, SINGH S K, et al. An inductor-less, discontinuous current source gate driver for SiC devices[J]. IEEE Access, 2019,7: 34227-34237. [18] ANTHONY P, MCNEILL N, HOLLIDAY D. High-speed resonant gate driver with controlled peak gate voltage for silicon carbide MOSFETs[C]// 2012 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2012. [19] ZHANG J, WU H, ZHAO J, et al. A resonant gate driver for silicon carbide MOSFETs[J]. IEEE Access, 2018, 6: 78394-78401. [20] CHENNU J V P S, MAHESHWARI R, LI H. New resonant gate driver circuit for high-frequency application of silicon carbide MOSFETs[J]. IEEE Transactions on Industrial Electronics, 2017, 64: 8277-8287. [21] GUI H, SUN J, TOLBERT L M. Charge pump gate drive to reduce turn-on switching loss of SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2020, 35: 13136-13147. [22] GUI H, ZHANG Z, CHEN R, et al. Current source gate drive to reduce switching loss for SiC MOSFETs[C]// 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2019. [23] SHIMOMURA T, IKARI T, OKUBO A, et al. High speed dV/dt control technology for SiC power module for EV/HEV inverters[C]// 2017IEEE Energy Conversion Congress and Exposition (ECCE), 2017: 5483-5486. [24] LI H, JIANG Y, FENG C, et al. A voltage-injected active gate driver for improving the dynamic performance of SiC MOSFET[C]// 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2019. [25] MIRYALA V K, HATUA K. A low cost analog active gate driver for SiC MOSFET to enable operation in higher parasitic environment[J]. IET Power Electronics, 2020, 13: 463-474. [26] ROTHMUND D, BORTIS D, KOLAR J W. Highly compact isolated gate driver with ultrafast overcurrent protection for 10 kV SiC MOSFETs[J]. CPSS Transactions on Power Electronics and Applications, 2019, 3(4):278-291. [27] HUANG X, TAIN C, YOU X. Research on overcurrent detection and protection of high-power SiC MOSFET driver[C]// IECON 2018 44th Annual Conference of the IEEE Industrial Electronics Society, 2018: 1471-1476. [28] WANG Z, SHI X, YUE Y, et al. Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs[J]. IEEE Transactions on Industrial Electronics,2014, 61:5570-5581. [29] VECHALAPU K, BHATTACHARYA S. Performance comparison of 10 kV x2013;15 kV high voltage SiC modules and high voltage switch using series connected 1.7 kV LV SiC MOSFET devices[C]// 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016: 1-8. [30] LEE I, YUE L, YAO X. Voltage balancing control with active gate driver for series connected SiC MOSFETs[C]// 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2019: 3235-3239. [31] KIM J, YOON D, CHO Y. Active gate control method for voltage balancing of series-connected SiC MOSFETs[C]// 2019 IEEE 4th International Future Energy Electronics Conference, 2019: 1-5. [32] GUI H, ZHANG Z, REN R, et al. SiC MOSFET versus Si super junction MOSFET-switching loss comparison in different switching cell configurations[C]// 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018: 6146-6151.
|