[1] KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24-49. [2] SAITO T, WATANOBE Y. Learning path recommendation system for programming education based on neural networks[J]. International Journal of Distance Education Technologies, 2020, 18(1): 36-64. [3] RAMAKRISHNAN N, SONI T. Network traffic prediction using recurrent neural networks[C]// 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 2018: 187-193. [4] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554-2558. [5] ZHANG Y S, ZHENG J, JIANG Y R, et al. A text sentiment classification modeling method based on coordinated CNN-LSTM-attention model[J]. Chinese Journal of Electronics, 2019, 28(1): 120-126. [6] SAON G, TUSKE Z, BOLANOS D, et al. Advancing RNN transducer technology for speech recognition[C]// ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021: 5654-5658. [7] TIWARI G, SHARMA A, SAHOTRA A, et al. English-Hindi neural machine translation-LSTM Seq2Seq and ConvS2S[C]// 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2020: 871-875. [8]. DATTA D, DAVID P E, MITTAL D. Neural machine translation using recurrent neural network[J]. International Journal of Engineering and Advanced Technology, 2020, 9(4): 1395-1400. [9] LI D, QIAN J. Text sentiment analysis based on long short-term memory[C]// 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI), Wuhan, China, 2016: 471-475. [10] PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks[C]// 30th International Conference on Machine Learning, ICML 2013, Atlanta, Georgia, USA, 2013: 2347-2355. [11] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [12] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. [13] SHEWALKAR A, NYAVANANDI D, LUDWIG S A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU[J]. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9(4): 235-245. [14] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. [15] GUO S L, FANG C, LIN J, et al. A configurable FPGA accelerator of Bi-LSTM inference with structured sparsity[C]// 2020 IEEE 33rd International System-on-Chip Conference (SOCC), Las Vegas, NV, USA, 2020: 174-179. [16] ZHANG Y B. Research on text classification method based on LSTM neural network model[C]// 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 2021: 1019-1022. [17] LI J X, UN K F, YU W-H, et al. An FPGA-based energy-efficient reconfigurable convolutional neural network accelerator for object recognition applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(9): 3143-3147. [18] 高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1): 68-92. [19] GUAN Y J, YUAN Z H, SUN G Y, et al. FPGA-based accelerator for long short-term memory recurrent neural networks[C]// 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 2017: 629-634. [20] 李渊博, 杨媛, 张小涛. 基于LSTM的IGBT参数预测硬件系统设计[J]. 电子技术应用, 2019, 45(10): 33-36. [21] 高琛, 张帆, 高彦钊. 利用数据稀疏性的LSTM加速器设计[J]. 电子学报, 2021, 49(2): 209-215. [22] 相博镪, 凌味未, 李蠡, 等. 基于FPGA的RNN硬件加速架构[J]. 成都信息工程大学学报, 2022, 37(4): 374-378. [23] WANG H, QIU D F, GE F, et al. Implementation of bidirectional LSTM accelerator based on FPGA[C]// 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 2022: 1512-1516. [24] ZHANG W F, GE F, CUI C C, et al. Design and implementation of LSTM accelerator based on FPGA[C]// 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 2020: 1675-1679. [25] ZHENG Y, YANG H G, HUANG Z H, et al. A high energy-efficiency FPGA-based LSTM accelerator architecture design by structured pruning and normalized linear quantization[C]// 2019 International Conference on Field-Programmable Technology (ICFPT), Tianjin, China, 2019: 271-274.
|