[1] KIMOTO T. SiC technologies for future energy electronics[C]// 2010 Symposium on VLSI Technology, June 15-17, 2010, Honolulu, HI, USA. New York: IEEE, 2010: 11488254. [2] ZHANG L, YUAN X, SHI C, et al. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1181-1196. [3] 张玉明, 汤晓燕, 宋庆文. 碳化硅功率器件研究现状[J]. 新材料产业, 2015(10): 26-30. [4] YU S, KANG M, LIU T, et al. Bias-induced threshold voltage instability and interface trap density extraction of 4H-SiC MOSFETs[C]// 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Oct. 29-31, 2019, Raleigh, NC, USA. New York: IEEE, 2019: 19378390. [5] LELIS A J, GREEN R, HABERSAT D B, et al. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 316-323. [6] YANG L, CASTELLAZZI A. High temperature gate-bias and reverse-bias tests on SiC MOSFETs[J]. Microelectronics Reliability, 2013, 53(9-11): 1771-1773. [7] THOMAS S M, SHARMA Y K, CROUCH M A, et al. Enhanced field effect mobility on 4H-SiC by oxidation at 1500 ℃[J]. IEEE Journal of the Electron Devices Society, 2014, 2(5): 114-117. [8] JIA Y, LV H, SONG Q, et al. Influence of oxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors[J]. Applied Surface Science, 2016, 397: 175-182. [9] OKAMOTO D, YANO H, HIRATA K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide[J]. IEEE Electron Device Letters, 2010, 31(7): 710-712. [10] ZHU Q, QIN F, LI W, et al. Improvement of SiO2/4H-SiC interface properties by electron cyclotron resonance microwave nitrogen-hydrogen mixed plasma post-oxidation annealing[J]. Applied Physics Letters, 2013, 103(6): 461-3. [11] LICHTENWALNER D J, CHENG L, DHAR S, et al. High mobility 4H-SiC (0001) transistors using alkali and alkaline earth interface layers[J]. Applied Physics Letters, 2014, 105(18): 176-291. [12] CHUNG G Y, TIN C C, WILLIAMS J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide[J]. IEEE Electron Device Letters, 2001, 22(4): 176-178. [13] JIA Y, LV H, NIU Y, et al. Effect of NO annealing on charge traps in oxide insulator and transition layer for 4H-SiC metal-oxide-semiconductor devices[J]. Chinese Physics B, 2016, 25(9): 097101. [14] YOSHIOKA H, NAKAMURA T, KIMOTO T. Generation of very fast states by nitridation of the SiO2/SiC interface[J]. Journal of Applied Physics, 2012, 112(2): 2028. [15] ROZEN J, DHAR S, DIXIT S K, et al. Increase in oxide hole trap density associated with nitrogen incorporation at the SiO2/SiC interface[J]. Journal of Applied Physics, 2008, 103(12): 124513. [16] JIA Y, LV H, TANG X, et al. Influence of various NO annealing conditions on N-type and P-type 4H-SiC MOS capacitors[J]. Journal of Materials Science, 2019, 30(11): 10302-10310. [17] 白志强,张艺蒙,汤晓燕,等. 氮钝化对SiC MOS电容栅介质可靠性的影响[J]. 西安电子科技大学学报, 2021: 1-7. [18] YEN C T, LEE H Y, HUNG C C, et al. Oxide breakdown reliability of SiC MOSFET[C]// 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), May 23-25, 2019, Taipei, Taiwan. New York: IEEE, 2019: 18867061. [19] CHBILI J, CHBILI Z, MATSUDA A, et al. Influence of lucky defect distributions on early TDDB failures in SiC power MOSFETs[C]// 2017 IEEE International Integrated Reliability Workshop (IIRW), 2017: 1-4. [20] FIORENZA P, ALESSANDRINO M, CARBONE B, et al. Understanding the role of threading dislocations on 4H-SiC MOSFET breakdown under high temperature reverse bias stress[J]. Nanotechnology, 2020, 31(12): 125203. [21] 徐鹏,邹琦,谢宗奎,柯俊吉,赵志斌.碳化硅MOSFET器件高温栅偏特性的实验分析[J]. 半导体技术, 2018, 43(10): 752-759. [22] WANG Z, ZHANG J, WU X, et al. Analysis of stray inductance's influence on SiC MOSFET switching performance[C]// IEEE Energy Conversion Congress and Exposition (ECCE), Sept. 14-18, 2014, Pittsburgh, PA, USA. New York: IEEE, 2014: 14774819. [23] ASAD F, R GIANPAOLO, U JESUS, et al. A comprehensive study on the avalanche breakdown robustness of silicon carbide power MOSFETs[J]. Energies, 2017, 10(4): 452. [24] CASTELLAZZI A, FAYYAZ A, ROMANO G, et al. Transient out-of-SOA robustness of SiC power MOSFETs[C]. IEEE International Reliability Physics Symposium (IRPS), April 2-6, 2017, Monterey, CA, USA. New York: IEEE, 2017: 16916330. [25] JUNJIE A N, NAMAI M, OKAMOTO D, et al. Investigation of maximum junction temperature for 4H-SiC MOSFET during unclamped inductive switching test[J]. Electronics and Communications in Japan, 2017, 101(1): 24-31. [26] REN N, WANG K L, WU J, et al. Failure mechanism analysis of SiC MOSFETs in unclamped inductive switching conditions[C]// 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 19-23, 2019, Shanghai, China. New York: IEEE, 2019: 183-186. [27] JI I H, GENDRON-HANSEN A, LEE M, et al. Highly rugged 1200 V 80 mQ 4-H SiC power MOSFET[C]// International Symposium on Power Semiconductor Devices and IC's (ISPSD), May 28-June 1, 2017, Sapporo, Japan. New York: IEEE, 2017: 17059531. [28] BAI Z, TANG X, XIE S, et al. Investigation on single pulse avalanche failure of 1200-V SiC MOSFETs via optimized thermoelectric simulation[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1168-1175. [29] BAI, Z, TANG, X, HE, Y, et al. Improving avalanche robustness of SiC MOSFETs by optimizing three-region P-well doping profile[J]. Microelectronics Reliability, 2021, 124: 114332. [30] LIU S, GU C, WEI J, et al. Repetitive unclamped-inductive-switching-induced electrical parameters degradations and simulation optimizations for 4H-SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2016, 63(11): 4331-4338. [31] ROMANO G, FAYAAZ A, RICCIO M, et al. A comprehensive study of short-circuit ruggedness of silicon carbide power MOSFETs[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(3): 978-987. [32] ROMANO G, MARESCA L, RICCIO M, et al. Short-circuit failure mechanism of SiC power MOSFETs[C]// IEEE International Symposium on Power Semiconductor Devices & Ics, May 10-14, 2015, Hong Kong, China. New York: IEEE, 2015: 15216675. [33] CECCARELLI L, REIGOSA P D, IANNUZZO F, et al. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis[J]. Microelectronics Reliability, 2017, 76-77: 272-276. [34] LIU J, ZHANG G, WANG B, et al. Gate failure physics of SiC MOSFETs under short-circuit stress[J]. IEEE Electron Device Letters, 2019, 41 (1): 103-106. [35] REIGOSA P, IANNUZZO F, CECCARELLI L. Failure analysis of a degraded 1.2 kV SiC MOSFET after short circuit at high temperature[C]// 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), July 16-19, 2018, Singapore. New York: IEEE, 2018: 18075651. [36] LI H, WANG J, N REN, et al. Investigation of 1200 V SiC MOSFETs' surge reliability[J]. Micromachines, 2019, 10(7): 485. [37] XU H, REN N, ZHU Z, et al. Methodology for enhanced surge robustness of 1.2 kV SiC MOSFET body diode[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 99: 1. [38] SADIK D P, HEINIG S, JACOBS K, et al. Investigation of the surge current capability of the body diode of SiC MOSFETs for HVDC applications[C]// European Conference on Power Electronics & Applications, Sept. 5-9, 2016, Karlsruhe, Germany. New York: IEEE, 2016: 16413127.
|