[1]柏松,李士颜,费晨曦,等. 新一代SiC功率MOSFET器件研究进展[J]. 人工晶体学报,2020,49(11):2122-2127. [2]高博,刘刚,王立新,等. 功率VDMOS器件低剂量率辐射损伤效应研究[J]. 微电子学,2013,43(1):115-119. [3]尚也淳,张义门,张玉明. SiC抗辐照特性的分析[J]. 西安电子科技大学学报,1999,26(6):807-810. [4]王敬轩,吴昊,王永维,等. SiC MOSFET器件抗辐照特性研究[J]. 智能电网,2016,4(11):1078-1081. [5]漆宇,李彦涌,胡家喜,等. SiC功率器件应用现状及发展趋势[J]. 大功率变流技术,2016(05):1-6. [6]盛柏赖,程文芳. 碳化珪器件及其应用[J]. 电子元器件应用,2001,3(5):19-23. [7]MüLLER M, BICKERMANN M, HOFMANN D, et al. Studies on SiC liquid phase crystallization as technique for SiC bulk growth[J]. Materials Science Forum, 1998, 264-268: 69-72. [8]科信. II-VI Advanced公司展示首款200mm碳化硅圆片[J]. 半导体信息,2015(4):17. [9]彭燕,陈秀芳,彭娟,等. 高质量半绝缘φ150mm 4H-SiC单晶生长研究[J].人工晶体学报,2016,45(5):1145-1152. [10]SCOTT. 中科院物理所成功研制6英寸碳化硅单晶衬底[J]. 今日电子,2015(1): 27. [11]申思,陈小龙. 国产碳化硅晶片产业的探路先锋[J]. 高科技与产业化,2019(5):18-21. [12]刘春艳,张明福. 苏州维特莱恩公司高品质6英寸电阻法碳化硅单晶研制成功[J]. 人工晶体学报,2019,48(9):1768. [13]张玉明,汤晓燕,宋庆文. 碳化硅功率器件研究现状[J]. 新材料产业,2015(10):26-30. [14]WU J. Design and fabrication of 4H-silicon carbide MOSFET[D]. The State Universict of New Jersey, 2009. [15]GAO B, LIU G, WANG L X, et al. Investigation into low dose rate radiation damage effects of radiation hardened power VDMOS devices[J]. Microelectronics, 2013, 43(1): 115-119. [16]LAUENSTEIN J M, LADBURY R L, GOLDSMAN N, et al. Interpreting space-mission LET requirements for SEGR in power MOSFETs[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3443-3449. [17]BOURDARIE, SéBASTIEN, XAPSOS M. The near-earth space radiation environment[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 1810-1832. [18]曹爽. 宇航用SiC结势垒肖特基二极管单粒子效应研究[D]. 北京:中国空间技术研究院(航天五院),2020. [19]HUGHES H L, BENEDETTO J M. Radiation effects and hardening of MOS technology:Devices and circuits[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 500-521. [20]BARTH J L, DYER C S, STASSINOPOULOS E G. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 466-482. [21]王敬轩,吴昊,王永维,等. SiC MOSFET器件抗辐照特性研究[J]. 智能电网,2016,4(11):1078-1081. [22]向宏文. 航天器空间辐射环境及效应地面模拟试验[C]// 中国宇航学会飞行器总体专业委员会学术研讨会.2005. [23]陈伟,郭晓强,姚志斌,等. 空间辐射效应地面模拟等效的关键基础问题[J]. 现代应用物理,2017,8(2):12. [24]SHERIDAN D C, CHUNG G, CLARK S, et al. The effects of high-dose gamma irradiation on high-voltage 4H-SiC schottky diodes and the SiC-SiO2 interface[J]. IEEE Transactions on Nuclear Science, 2002, 48(6): 2229-2232. [25]NIGAM S, KIM J, REN F, et al. High energy proton irradiation effects on SiC schottky rectifiers[J]. Applied Physics Letters, 2002, 81(13): 2385-2387. [26]CHAO D S, SHIH H Y, JIANG J Y, et al. Influence of displacement damage induced by neutron irradiation on effective carrier density in 4H-SiC SBDs and MOSFETs[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBD08. [27]SZE S M. Physics of semiconductor devices[J]. IEEE Journal of Quantum Electronics, 1981, 15(12): 1438-1438. [28]YANG G, PANG Y, YANG Y, et al. High-dose electron radiation and unexpected room-temperature self-healing of epitaxial SiC schottky barrier diodes[J]. Nanomaterials, 2019, 9(2): 194. [29]AITKEN J M, YOUNG D R, PAN K. Electron trapping in electron-beam irradiated SiO2[J]. Journal of Applied Physics, 1978(49): 3386-3391. [30]STORASTA L, BERGMAN J P, ANZéN E, et al. Deep levels created by low energy electron irradiationin 4H-SiC[J]. Journal of Applied Physics, 2004(96): 4909-4915. [31]?INAR K, CO SKUN C, AYDO GAN, et al. The effect of the electron irradiation on the seriesresistance of au/ni/6h-sic and Au/Ni/4H-SiC schottky contacts[J]. Nuclear instruments and methods in physics research, 2010, 268(6): 616-621. [32]PEASE R L, ENLOW E W, DINGER G L, et al. Comparison of proton and neutron carrier removal rates[J]. IEEE Transactions on Nuclear Science, 1988, 34(6): 1140-1146. [33]MCGARRITY J M, MCLEAN F B, DELANCEY W M,et al. Silicon Carbide JFET Radiation Response[J]. IEEE Transactions on Nuclear Science, 1992, 39(6): 1974-1981. [34]HEMMINGSSON C, SON N T, KORDINA O, et al. Deep level defects in electron-irradiated 4H-SiC epitaxial layers[J]. Journal of Applied Physics, 1997, 81(9): 6155-6159. [35]OMOTOSO E, MEYER W E, AURET F D, et al. The influence of high energy electron irradiation on the schottky barrier height and the richardson constant of Ni/4H-SiC schottky diodes[J]. Materials Science in Semiconductor Processing, 2016, 39: 112-118. [36]OMOTOSO E, MEYER W E. The effects of high-energy proton irradiation on the electrical characteristics of Au/Ni/4H-SiC schottky barrier diodes[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017: 241-245. [37]OMOTOSO E, MEYER W E, AURET F D, et al. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel schottky diodes on 4H–SiC[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 365: 264-268. [38]AURET F, D. Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation[J]. Nuclear Instruments & Methods in Physics Research, 2016: 312-316. [39]叶毅,张金平,罗小蓉,等. 新型4H-SiC阳极凹槽D-RESURF肖特基二极管[J]. 微电子学,2008,38(4):457-467. [40]陈刚,秦宇飞,柏松,等. 采用场板和边缘终端技术的大电流Ni/4H-SiC SBDs[J]. 固体电子学研究与进展,2009,29(4):611-614. [41]HAZDRA P, ZAHLAVA V, VOBECKY J. Point defects in 4H–SiC epilayers introduced by neutron irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 327: 124-127. [42]BERG D, A HALLéN, PELLEGRINO P, et al. Nitrogen deactivation by implantation-induced defects in 4H–SiC epitaxial layers[J]. Applied Surface Science, 2001, 78(19): 2908-2910. [43]刘超铭,肖一平,王天琦,等. 4H-SiC结势垒肖特基二极管电子辐照效应测试分析[J]. 现代应用物理,2021,12(2):71-77. [44]GUPTA S, MURALIKIRAN M, FARMER J, et al. The effect of boron doping and gamma irradiation on the structure and properties of microwave chemical vapor deposited boron-doped diamond films[J]. Journal of Materials Research, 2009, 24(4): 1498-1512. [45]?INAR K, CO?KUN C, AYDO?AN ?, et al. The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC schottky contacts[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(6): 616-621. [46]PARADZAH A T, OMOTOSO E, LEGODI M J, et al. Electrical characterization of high energy electron irradiated Ni/4 H-SiC schottky barrier diodes[J]. Journal of Electronic Materials, 2016, 45(8): 4177-4182. [47]LUO Z, CHEN T, CRESSLER J D, et al. Impact of proton irradiation on the static and dynamic characteristics of high-voltage 4H-SiC JBS switching diodes[J]. IEEE transactions on nuclear science, 2003, 50(6): 1821-1826. [48]OMOTOSO E, MEYER W E, AURET F D, et al. Response of Ni/4H-SiC schottky barrier diodes to alpha-particle irradiation at different fluences[J]. Physica B: Condensed Matter, 2016, 480: 196-200. [49]PEARTON S J, DEIST R, REN F, et al. Review of radiation damage in GaN-based materials and devices[J]. Journal of Vacuum Science & Technology A: Vacuum,Surfaces,and Films, 2013, 31(5): 050801. [50]PONS D, BOURGOIN J C. Irradiation-induced defects in GaAs[J]. Journal of Physics C: Solid State Physics, 1985, 18(20): 3839. [51]LIU C, BERENCéN Y, YANG J, et al. Irradiation effects on the structural and optical properties of single crystal β-Ga2O3[J]. Semiconductor Science and Technology, 2018, 33(9): 095022. [52]陈刚,秦宇飞,柏松,等. 采用场板和边缘终端技术的大电流Ni/4H-SiC SBDs[J]. 固体电子学研究与进展,2009,29(4):611-614. [53]ALEXANDRU M, FLORENTIN M. 5 MeV proton and 15 MeV electron radiation effects study on 4H-SiC nMOSFET electrical parameters[J]. Transactions on Nuclear Science, 2014, 8: 1732-1738. [54]LIANG X W, CUI J W. Study of the influence of gamma irradiation on long-term reliability of SiC MOSFET[J]. Radiation Effects and Defects in Solids, 2020, 175(5-6): 559-566. [55]SCHWANK J R, SHANEYFELT M R, FLEETWOOD D M, et al. Radiation effects in MOS oxides[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 1833-1853. [56]于成浩. 功率MOSFET单粒子效应及辐射加固研究[D]. 哈尔滨:哈尔滨工程大学,2016. [57]于庆奎,曹爽,张洪伟,等. SiC器件单粒子效应敏感性分析[J]. 原子能科学技术,2019,53(10):2114-2119. [58]HULL B A, DAS M K, RYU S H, et al.Status of 1200 V 4H-SIC power dmosfets[C]// 2007 International Semiconductor Device Research Sympos, 2007.
|