[1] 曹虎,董凯,孙丛君,等. 节能技术在城市轨道交通车辆牵引传动系统中的应用[J]. 牵引制动,2019(9):36-42. [2] LADOUX P, MERMET M, CASARIN J, et al. Outlook for SiC devices in traction converters[C]// Electrical Systems for Aircraft, Railway & Ship Propulsion. IEEE, 2012: 1-6. [3] NILS S, EUGEN W, EUGEN S, et al. Electric-energy savings using 3.3 kV full-SiC power-modules in traction applications[C]// 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, 2020: 15-19. [4] KIMOTO T. Ultrahigh-voltage SiC devices for future power infrastructure[C]// 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC). IEEE, 2013: 17. [5] 杨涛,窦泽春,朱武,等. 基于SiC MOSFET的牵引逆变器在轨道交通中的应用研究[J]. 机车电传动,2020(1):28-33. [6] MITSUBISHI ELECTRIC CORPORATION. Mitsubishi electric’s railcar traction inverter with all-SiC power modules achieves 40% power savings[EB/OL]. (2015-06-22). https://wwww.mitsubishielectric.com/news/2015/pdf/0622-a.pdf. [7] XING H, LEONID F, ANUP B, et al. Design and Fabrication of 3.3 kV SiC MOSFETs for Industrial Applications[C]// 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE, 2017: 8. [8] SHIMAA A, SHIMIZUB H, MORIC Y, et al. 3.3 kV 4H-SiC DMOSFET with highly reliable gate insulator and body diode[C]// 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM). IEEE, 2016:1. [9] LUCA M, ILARIA M, MICHELE R, et al. TCAD model calibration for the SiC/SiO2 interface trap distribution of a planar SiC MOSFET[C]// 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia) IEEE, 2020:1. [10] KEITA T, TAKAHISA O, TAKUMA K, et al. Short-channel effects in SiC MOSFETs based on analyses of saturation drain current[J]. IEEE Transactions on Electron Devices, 2021, 3(68): 1. [11] DANYI X, SONG C, HAINING W, et al. 1700 V Si-IGBT and SiC-SBD hybrid module for AC690V inverter system[C]// 2014 International Power Electronics and Application Conference and Exposition, IEEE, 2014: 1. [12] 山野井秀明. 银座线01系地铁列车SiC功率模块主电路系统的试验报告[J]. 国外铁道机车与动车. 2013,6(432):29-34. [13] ANDREAS M, ROMAN H, MARTIN H, et al. Requirements to change from IGBT to full SiC modules in an on-board railway power supply[C]// 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), IEEE, 2015. [14] LIU G, WU Y, LI K, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2018. [15] HUANG A Q. Power semiconductor devices for smart grid and renewable energy systems[J]. Proceedings of the IEEE, 2017, 105(11): 2019-2047. [16] XIMING C, XUAN L, YAFEI W, et al. Different JFET designs on conduction and short-circuit capability for 3.3 kV planar-gate silicon carbide MOSFETs[C]// Journal of the Electron Devices Society, IEEE, 2020(8):841-845. [17] ADITI A, JAYANT B B, FRANCOIS M M A, et al. 3.3 kV 4H-SiC planar-gate MOSFETs manufactured using gen-5 PRESiCE? technology in a 4-inch wafer commercial Foundry [C]// Southeast Con, 2021. [18] LI Y, COOPER J A, CAPANO M A. High-voltage (3 kV) UMOSFETs in 4H-SiC[J]. Electron Devices IEEE Transactions on, 2002, 49(6):972-975. [19] BOLOTNIKOV A, LOSEE P, MATOCHA K, et al. 3.3kV SiC MOSFETs designed for low on-resistance and fast switching[J]. IEEE International Symposium on Power Semiconductor Devices and ICs, 2012. [20] HULL B, ALLEN S, ZHANG J, et al. Reliability and stability of SiC power MOSFETs and next-generation SiC MOSFETs[C]// Wide Bandgap Power Devices & Applications, IEEE, 2014. [21] HAMADA K, HINO S, MIURA N, et al. 3.3 kV/1500 A power modules for the world's first all-SiC traction inverter[J]. Jpn j appl phys, 2015, 54(4s): 04DP07. [22] SHIMA A, SHIMIZU H, MORI Y, et al. 3.3 kV 4H-SiC DMOSFET with highly reliable gate insulator and body diode[J]. Materials ence Forum, 2017, 897:493-496. [23] HARADA S, KOBAYASHI Y, ARIYOSHI K, et al. 3.3-kV-class 4H-SiC MeV-implanted UMOSFET with reduced gate oxide field[J]. IEEE Electron Device Letters, 2016, 37(3): 314-316. [24] GENESIC. G2R120MT33J/G2R120MT33J. [2022-04-26]. https://www.genesicsemi.com/sic-mosfet/G2R120MT33J/G2R120MT33J.pdf. [25] GENESIC. G2R120MT33J/G2R1000MT33J. [2022-04-26]. https://www.genesicsemi.com/sic-mosfet/ G2R120MT33J /G2R1000MT33J.pdf. [26] GENESIC. G2R300MT65-CAL/G2R300MT65-CAL. [2022-04-26]. https://www.genesicsemi.com/sic-mosfet/bare-chip/G2R300MT65-CAL/G2R300MT65-CAL.pdf. [27] MASKAZU B, TAKESHI T, TADAO M, et al, Ultra-low specific on-resistance achieved in 3.3kV-class SiC superjunction MOSFET[C]// 2021 33rd International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE,2017. [28] AKETA M, YOKOTSUJI Y, MIURA M, et al. 4H-SiC trench structure schottky diodes[J]. Materials Science Forum, 2012, 717-720: 933-936. [29] BROSSELARD P, BANU V, CAMARA N, et al. Recent progress in 3.3 kV SiC diodes[J]. Materials Science and Engineering B, 2009, 165(1-2): 15-17. [30] ASANO K. High temperature static and dynamic characteristics of 3.7 kV high voltage 4H-SiC JBS[C]// IEEE, 2000: 97-100. [31] ZHAO J H, ALEXANDROV P, LI X. Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes[J]. Electron Device Letters IEEE, 2003, 24(6): 402-404 [32] ISHIKAWA K, OGAWA K, KAMESHIRO N, et al. Inverter loss reduction using 3 kV SiC-JBS diode and high-speed drive circuit[J]. Materials Science Forum, 2010, 645-648: 1127-1130. [33] ISHIKAWA K, YUKUTAKE S, KONO Y, et al. Traction inverter that applies compact 3.3 kV /1200 A SiC hybrid module[C]// 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA). IEEE,2014. [34] HUANG A Q, LI W, QI T, et al. Medium voltage solid state transformers based on 15 kV SiC MOSFET and JBS diode[C]// IECON 2016 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE,2016. [35] 王永维,李永平,王勇,等. 4H-SiC高压肖特基二极管研制[J]. 智能电网,2017,5(8):4. [36] 薛爱杰,黄润华,柏松,等. 6500 V 15 A 4H-SiC JBS二极管的研制[J]. 微纳电子技术,2018,55(3):6. [37] 彭朝阳,白云,申华军,等. 3300 V高压4H-SiC结势垒肖特基二极管器件的研制[J]. 大功率变流技术,2016(5):5. [38] CHEN H, CHEN X M, HAN Z L, et al. Investigation on short circuit test of 3300V SiC MOSFET[C]// IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019. [39] SONG Q W, YANG S, TANG G N,et al. 4H-SiC trench MOSFET with L-shaped gate[J]. IEEE Electron Device Letters, 2016, 37(4): 1-4. [40] ORAON A, SHREYA S, KUMARI R, et, al. A double trench 4H-SiC MOSFET as an enhanced model of SiC UMOSFET[C]// 7th International Symposium on Embedded Computing and System Design (ISED), 2017. [41] PASCU R, KUSKO M, IONESCU O, et al. Electrical defects in grown oxide on SiC and from the oxide/SiC interface[C]// 2020 International Semiconductor Conference (CAS). 2020. [42] CHANGWEI Z, QIJUN L, YAFEI W, et al. Fabrication and characterization of 3.3 kV SiC MOSFET with embedded Junction Barrier Schottky Diode[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Asia), 2021. [43] BODO. Bodo’s Power System [EB/OL]. (2018-09) [2022-04-26]. https://www.bodospower.com/restricted/downloads/bp_2018_09.pdf. [44] BRUNT E V, O' LOUGHLIN M, BURK A, et al. Industrial and body diode qualification of Gen-III medium voltage SiC MOSFETs: Challenges and solutions[J]. Materials Science Forum, 2019, 963: 805-810. [45] RYOHEI T, KATSUMI T, SATOSHI K, et al. 3.3 kV All-SiC module for electric distribution equipment[C]// International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018. [46] 刘国友,彭勇殿,常桂钦,等. 牵引用3300V/500A SiC混合模块研制[J]. 电力电子技术,2017,51(8):4-7. [47] 第三代半导体风向[EB/OL]. (2021-12-09)[2022-03-24].https://sdb.hangjianet.com/topic/1639003676130. [48] MITSUBISHI ELECTRIC. SiC power modules appropriated by application[EB/OL]. [2022-04-16]. https://www.mitsubishielectric.com/semiconductors/products/powermod/sicpowermod/index.html. [49] HITACHI. MBN1200F33F-C[EB/OL]. (2017-10-01) [2022-04-26]. https://www.hitachi-power-semiconductor-device.co.jp/en/products/igbt/data/LD-ES-170634-MBN1200F33F-C.zip. [50] HITACHI. MBN1200F33F-C[EB/OL]. (2017-10-01) [2022-04-26]. https://www.hitachi-power-semiconductor-device.co.jp/en/products/igbt/data/LD-ES-170634-MBN1800F33F-C.zip. [51] FUJI ELECTRIC. 2MSI400VAE-170-53[EB/OL]. (2017-10-01) [2022-04-26]. https://felib.fujielectric.co.jp/download/details.htm?dataid=11843875&site=china&lang=zh-CN [52] FUJI ELECTRIC. IGBT hybrid modules with SiC-SBD X series[EB/OL]. [2022-04-26]. https://www.fujielectric.com/products/semiconductor/cn/model/sic/hybrid.html [53] KATSUMI I, SEIGO Y, YASUHIKO K, et al. Traction inverter that applies compact 3.3 kV / 1200 A SiC hybrid module[C]//International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA),2014. [54] MITSUBISHI ELECTRIC. Mitsubishi electric's New 6.5 kV full-SiC power semiconductor module achieves world's highest power density[EB/OL]. (2018-1-01-31) [2022-04-26]. https://www.mitsubishielectric.com/news/2018/0131-a.html. [55] BODO. Bodo’s Power System [EB/OL]. (2018-01) [2022-04-26]. https://www.bodospower.com/restricted/downloads/bp_2018_01.pdf. [56] KAN Y, SEIICHI H, TAKASHI I, et al, A 3.3 kV 1000 A high power density SiC power module with sintered copper die attach technology[C]// PCIM, 2019. [57] HITACHI. MBM1000FS17G[EB/OL]. (2017-10-01) [2022-04-26]. https://www.hitachi-power-semiconductor-device.co.jp/en/products/igbt/data/LD-ES-170634-MBM1000FS17G.zip. [58] 朱俊杰,原景鑫,聂子玲,等. 基于全碳化硅功率组件的叠层母排优化设计研究[J]. 中国电机工程学报,2019,39(21):6383-6393. [59] OHARA K, MASUMOTO H, TAKAHASHI T, et al. A New IGBT Module with Insulated Metal Baseplate(IMB) and 7th Generation Chips[C]//Pcim Europe, International Exhibition & Conference for Power Electronics. VDE, 2015. [60] KAN Y, HAYAKAWA S, NAKAMURA M, et al. Improvement of power cycling reliability of 3.3kV full-SiC power modules with sintered copper technology for Tj, max=175°C[C]// 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2018.
|