[1] HOWER P L, PENDHARKAR S, EFLAND T. Current status and future trends in silicon power devices[C]//2010 International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2010: 13.1.1-13.1.4. [2] AMANO H, BAINES Y, BEAM E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D: Applied Physics, 2018, 51(16): 163001. [3] CHEN K J, H?BERLEN O, LIDOW A, et al. GaN-on-Si power technology: Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. [4] YELURI R, LU J, HURNI C A, et al. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction[J]. Applied Physics Letters, 2015, 106(18): 183502. [5] ZHANG Y H, SUN M, LIU Z H, et al. Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors[J]. IEEE Transactions on Electron Devices, 2013, 60(7): 2224-2230. [6] SANG L, REN B, SUMIYA M, et al. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes[J]. Applied Physics Letters, 2017, 111(12): 122102. [7] HASHIMOTO S, YOSHIZUMI Y, TANABE T, et al. High-purity GaN epitaxial layers for power devices on low-dislocation-density GaN substrates[J]. Journal of Crystal Growth, 2007, 298: 871-874. [8] HU J, ZHANG Y H, SUN M, et al. Materials and processing issues in vertical GaN power electronics[J]. Materials Science in Semiconductor Processing, 2018, 78: 75-84. [9] FU H Q, FU K, CHOWDHURY S, et al. Vertical GaN power devices: Device principles and fabrication technologies—part II[J]. IEEE Transactions on Electron Devices, 2021, 68(7): 3212-3222. [10] BALIGA B J. Fundamentals of power semiconductor devices[M]. New York: Springer, 2008. [11] VASSILEVSKI K V, RASTEGAEVA M G, BABANIN A I, et al. Fabrication of GaN mesa structures[J]. MRS Internet Journal of Nitride Semiconductor Research, 1996, 1(1): 38. [12] FUKUSHIMA H, USAMI S, OGURA M, et al. Deeply and vertically etched butte structure of vertical GaN p–n diode with avalanche capability[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SCCD25. [13] MAEDA T, NARITA T, UEDA H, et al. Parallel-plane breakdown fields of 2.8-3.5 MV/cm in GaN-on-GaN p-n junction diodes with double-side-depleted shallow bevel termination[C]//2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA: IEEE, 2018: 30.1.1-30.1.4. [14] MAEDA T, NARITA T, UEDA H, et al. Design and fabrication of GaN p-n junction diodes with negative beveled-mesa termination[J]. IEEE Electron Device Letters, 2019, 40(6): 941-944. [15] ZENG K, CHOWDHURY S. Designing beveled edge termination in GaN vertical p-i-n diode-bevel angle, doping, and passivation[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2457-2462. [16] NIE K W, XU W Z, REN F F, et al. Highly enhanced inductive current sustaining capability and avalanche ruggedness in GaN p-i-n diodes with shallow bevel termination[J]. IEEE Electron Device Letters, 2020, 41(3): 469-472. [17] FUKUSHIMA H, USAMI S, OGURA M, et al. Vertical GaN p–n diode with deeply etched mesa and the capability of avalanche breakdown[J]. Applied Physics Express, 2019, 12(2): 026502. [18] MUDIYANSELAGE H D, WANG D, FU H. Wide bandgap vertical kV-class β-Ga?O?/GaN heterojunction p-n power diodes with mesa edge termination[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 89-97. [19] ZHANG Y, SUN M, LIU Z, et al. Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings[C]//2016 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA: IEEE, 2016: 10.2.1-10.2.4. [20] LIU J C, XIAO M, ZHANG R Z, et al. 1.2-kV vertical GaN fin-JFETs: High-temperature characteristics and avalanche capability[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 2025-2032. [21] ZHANG Y H, LIU Z H, TADJER M J, et al. Vertical GaN junction barrier Schottky rectifiers by selective ion implantation[J]. IEEE Electron Device Letters, 2017, 38(8): 1097-1100. [22] ZHOU Y H, WU Q S, ZHANG Q, et al. Numerical analysis of the GaN trench MIS barrier Schottky diodes with high dielectric reliability and surge current capability[J]. AIP Advances, 2022, 12(6): 065117. [23] NOMOTO K, HU Z, SONG B, et al. GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 mΩ-cm2: A record high figure-of-merit of 12.8 GW/cm2[C]//2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA: IEEE, 2015: 9.7.1-9.7.4. [24] OZBEK A M, BALIGA B J. Planar nearly ideal edge-termination technique for GaN devices[J]. IEEE Electron Device Letters, 2011, 32(3): 300-302. [25] ALOK D, BALIGA B J. SiC device edge termination using finite area argon implantation[J]. IEEE Transactions on Electron Devices, 1997, 44(6): 1013-1017. [26] LIU Z R, WANG J F, GU H, et al. High-voltage vertical GaN-on-GaN Schottky barrier diode using fluorine ion implantation treatment[J]. AIP Advances, 2019, 9(5): 055016. [27] LIU X K, LIN F, LI J, et al. 1.7-kV vertical GaN-on-GaN Schottky barrier diodes with helium-implanted edge termination[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1938-1944. [28] HAN S W, YANG S, SHENG K. Fluorine-implanted termination for vertical GaN Schottky rectifier with high blocking voltage and low forward voltage drop[J]. IEEE Electron Device Letters, 2019, 40(7): 1040-1043. [29] YIN R Y, LI Y, WEN C P, et al. High voltage vertical GaN-on-GaN Schottky barrier diode with high energy fluorine ion implantation based on space charge induced field modulation (SCIFM) effect[C]//2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020: 298-301. [30] NAKAMURA S, IWASA N, SENOH M, et al. Hole compensation mechanism of P-Type GaN films[J]. Japanese Journal of Applied Physics, 1992, 31(5R): 1258-1266. [31] OKAMOTO Y, SAITO M, OSHIYAMA A. First-principles calculations on Mg impurity and Mg-H complex in GaN[J]. Japanese Journal of Applied Physics, 1996, 35(7A): L807-L809. [32] CZERNECKI R, GRZANKA E, JAKIELA R, et al. Hydrogen diffusion in GaN:Mg and GaN:Si[J]. Journal of Alloys and Compounds, 2018, 747: 354-358. [33] FU H Q, FU K, HUANG X Q, et al. High performance vertical GaN-on-GaN p-n power diodes with hydrogen-plasma-based edge termination[J]. IEEE Electron Device Letters, 2018, 39(7): 1018-1021. [34] BIAN Z L, ZENG K, CHOWDHURY S. 2.8 kV avalanche in vertical GaN PN diode utilizing field plate on hydrogen passivated P-layer[J]. IEEE Electron Device Letters, 2022, 43(4): 596-599. [35] YIN R Y, LI C, ZHANG B, et al. Physical mechanism of field modulation effects in ion implanted edge termination of vertical GaN Schottky barrier diodes[J]. Fundamental Research, 2022, 2(4): 629-634. [36] GUO X L, ZHONG Y Z, ZHOU Y, et al. Nitrogen-implanted guard rings for 600-V quasi-vertical GaN-on-Si Schottky barrier diodes with a BFOM of 0.26 GW/cm2[J]. IEEE Transactions on Electron Devices, 2021, 68(11): 5682-5686. [37] BOCKOWSKI M. Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing[J]. Applied Physics Letters, 2019, 115(14): 142104. [38] DICKERSON J R, ALLERMAN A A, BRYANT B N, et al. Vertical GaN power diodes with a bilayer edge termination[J]. IEEE Transactions on Electron Devices, 2016, 63(1): 419-425. [39] WANG J, CAO L, XIE J, et al. High voltage vertical p-n diodes with ion-implanted edge termination and sputtered SiNx passivation on GaN substrates[C]//2017 IEEE International Electron Devices Meeting (IEDM), 2017: 9.6.1-9.6.4. [40] WANG J, MCCARTHY R, YOUTSEY C, et al. High-voltage vertical GaN p-n diodes by epitaxial liftoff from bulk GaN substrates[J]. IEEE Electron Device Letters, 2018, 39(11): 1716-1719. [41] WANG J, CAO L, XIE J, et al. High voltage, high current GaN-on-GaN p-n diodes with partially compensated edge termination[J]. Applied Physics Letters, 2018, 113(2): 023502. [42] OHTA H, ASAI N, HORIKIRI F, et al. Two-step mesa structure GaN p-n diodes with low on-resistance, high breakdown voltage, and excellent avalanche capabilities[J]. IEEE Electron Device Letters, 2020, 41(1): 123-126. [43] YATES L, GUNNING B P, CRAWFORD M H, et al. Demonstration of >6.0-kV breakdown voltage in large area vertical GaN p-n diodes with step-etched junction termination extensions[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1931-1937. [44] LIN W, WANG M, YIN R, et al. Hydrogen-modulated step graded junction termination extension in GaN vertical p-n diodes[J]. IEEE Electron Device Letters, 2021, 42(8): 1124-1127. [45] HU Z, NOMOTO K, QI M, et al. 1.1-kV vertical GaN p-n diodes with p-GaN regrown by molecular beam epitaxy[J]. IEEE Electron Device Letters, 2017, 38(8): 1071-1074. [46] FU K, FU H, HUANG X, et al. Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics[J]. IEEE Electron Device Letters, 2019, 40(11): 1728-1731. [47] ARMSTRONG A M, ALLERMAN A A, PICKRELL G W, et al. Etched-and-regrown GaN pn -diodes with 1600 V blocking voltage[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 318-323. [48] LIU J, XIAO M, ZHANG Y, et al. 1.2 kV vertical GaN fin JFETs with robust avalanche and fast switching capabilities[C]//2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA: IEEE, 2020: 23.2.1-23.2.4. [49] OHTA H, HAYASHI K, NAKAMURA T, et al. High breakdown voltage vertical GaN p-n junction diodes using guard ring structures[C]//2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). Kyoto, Japan: IEEE, 2017: 54-55. [50] ZHOU J Y, HE L, LI X B, et al. Vertical GaN Schottky barrier diodes with area-selectively deposited p-NiO guard ring termination structure[J]. Superlattices and Microstructures, 2021, 151: 106820. [51] FU H Q, FU K, ALUGUBELLI S R, et al. High voltage vertical GaN p-n diodes with hydrogen-plasma based guard rings[J]. IEEE Electron Device Letters, 2020, 41(1): 127-130. |