[1]黄志澄,杨军威.世界主要国家量子信息技术发展及应用问题研究[J].远望智库:远望专刊, 2020:20-25. [2]DEVORET MH,SCHOELKOPF RJ.Superconducting circuits for quantum information: An outlook[J].Science, 2013, 339(6124): 1169-1174. [3]JIN YR,ZHENG DN.The road to long coherence time superconducting quantum bits[J].Chinese Science Bulletin, 2017, 62(34): 3935-3946. [4]CLARKE J,WILHELMFK.Superconducting quantum bits[J]. Nature, 2008, 453(7198): 1031-1042. [5]NIELSEN MA, CHUANG IL.Quantum computation and quantum information[M].Cambridge: Cambridge University Press,2010. [6]OLIVER WD, WELANDER PB. Materials in superconducting quantum bits[J]. MRS Bulletin, 2013, 38(10): 816-825. [7]HUANG HL,WU DC,FAN DJ, et al.Superconducting quantum computing:A review[J]. Science China, 2020, 63(8): 59-90. [8]余玄,陆新,奚军等.基于约瑟夫森结的超导量子芯片进展概述[J].计算机工程, 2018,44(12):33-38, 45. [9]金贻荣.超导与量子计算[J].自然杂志,2020, 42(4): 301-310. [10]俞杰勋,王谦,郑瑶,等.面向超导量子器件的封装集成技术[J]. 电子与封装, 2023, 23(3): 030108 . [11]刘强.超导量子器件的制备与可扩展封装方案的研究[D].南京:南京大学, 2017. [12]熊康林,冯加贵,郑亚锐,等.超导量子电路材料[J].科学通报,2022,67(2):143-162. [13]李贺康.超导量子计算相关器件的制备工艺研究[D].北京:中国科学院大学, 2019. [14]张珂.超导量子器件制备及工艺研究[D]. 南京:南京大学,2017. [15]杨真.超导量子比特器件制备与测控[D]. 南京:南京大学,2019. [16]吴桐.基于约瑟夫森结的超导量子器件制备[D]. 黑龙江:哈尔滨工业大学, 2019. [17]周宇轩.可扩展超导量子器件的设计与制备[D]. 哈尔滨:哈尔滨工业大学, 2020. [18]郑伟文,李晓伟,熊康林,等.超导量子芯片集成技术概述[J].电子元件与材料, 2022, 41(11): 1143-1148. [19]秦智晗,汪冰.超导量子计算芯片用低温封装结构研究[J].机械与电子控制工程,2022,4(3):191-194. [20]BRONN NT, ADIGA VP, OLIVADESE SB, et al. High coherence plane breaking packaging for superconducting qubits[J]. Quantum Science and Technology, 2018, 3(2): 024007. [21]孔伟成.基于transmon qubit的量子芯片工作环境的研究与优化[D].合肥:中国科学技术大学, 2018. [22]张墅野,李振峰,何鹏,等.微系统三维异质异构集成研究进展[J].电子与封装,2021,21(10):100106 [23]汤姝莉,赵国良,薛亚慧,等. 基于TSV倒装焊与芯片叠层的高密度组装及封装技术[J].电子与封装,2022,22(8):080201 [24]ROSENBERG D, WEBER S J, CONWAY D, et al. Solid-state qubits: 3D integration and packaging[J]. IEEE Microwave Magazine, 2020, 21(8): 72-85. [25]KOSEN S, LIH X, ROMMEL M,et al. Building blocks of a flip-chip integrated superconducting quantum processor[J]. Quantum Science and Technology, 2022, 7(3): 035018. [26]YOST DRW, SCHWARTZ ME,MALLEK J, et al. Solid-state qubits integrated with superconducting through-silicon vias[J]. npj Quantum Information, 2020, 6(1): 1-7. [27]MATTHEW S. IBM creates largest ever superconducting quantum computer[Z].2022. [28]ARVIND K. IBM pledges $20 billion investment in quantum computing, semiconductor production in New York[Z].2022. [29]KELLY J, BARENDS R, FOWLER A G, et al. State preservation by repetitive error detection in a superconducting quantum circuit[J]. Nature, 2015, 519(7541): 66-69. [30]SAVAGE N.Quantum computers compete for "supremacy"[J]. Scientific American, 2018, 27: 108-111. [31]WENNER J,NEELEY MR, BIALCZAK R C,etal. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits[J].Superconductor Science and Technology, 2011,24(6):65001-65007. [32]DAS R N,YODER J L, ROSENBERG D, etal. Cryogenic qubit integration for quantum computing[J].2018 IEEE 68th Electronic Components and Technology Conference,2018: 504-514 [33]于杰平,王丽.中美量子计算研发现状对比分析及启示[J].世界科技研究与发展, 2022, 44(1): 35-45. [34]付震宇,刘凌旗,陈羽臻,等.量子计算技术发展路线与趋势分析[J].中国电子科学研究院学报, 2021, 16(8): 813-819. [35]潘建伟.在可编程二维62比特量子处理器上的量子行走[J].科学, 2021. [36]郭光灿,陈以鹏,王琴. 量子计算机研究进展[J].南京邮电大学学报, 2020, 40(5): 3-10.
|