[1] KATHIRVELAN J. Recent developments of inkjet-printed flexible sensing electronics for wearable device applications: a review[J]. Sensor Review, 2021, 41(1): 46-56. [2] LIU S, YUEN M C, WHITE E L, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28232-28241. [3] YE D, PENG Z H, LIU J X, et al. Self-limited ultraviolet laser sintering of liquid metal particles for μm-thick flexible electronics devices[J]. Materials & Design, 2022, 223: 111189. [4] JANG Y R, RYU C H, HWANG Y T, et al. Optimization of intense pulsed light sintering considering dimensions of printed Cu nano/micro-paste patterns for printed electronics[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(2): 471-485. [5] LEE I S, RYU K, PARK K H, et al. Temperature effect on physical properties and surface morphology of printed silver ink during continuous laser scanning sintering[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1960-1968. [6] REN X L, ZHENG M L, JIN F, et al. Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction[J]. The Journal of Physical Chemistry C, 2016, 120(46): 26532-26538. [7] ZHOU X W, GUO W, FU J, et al. Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing[J]. Applied Surface Science, 2019, 494: 684-690. [8] KANG B, HAN S, KIM J, et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 2011, 115(48): 23664-23670. [9] YU J H, JUNG H S, JEONG J K, et al. Sintering behavior of copper nanoparticle ink by laser in air[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(3): 1261-1268. [10] THEODORAKOS I, ZACHARATOS F, GEREMIA R, et al. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics[J]. Applied Surface Science, 2015, 336: 157-162. [11] YANG G N, LIN W, LAI H Q, et al. Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles[J]. Ultrasonics Sonochemistry, 2021, 73: 105497. [12] YANG G N, ZENG X, WANG P Y, et al. Size refinement of copper nanoparticles: A perspective from electrochemical nucleation and growth mechanism[J]. ChemElectroChem, 2021, 8(5): 819-828. [13] 顾瑞楠, WONG K S, 严明. 金、银、铜等典型高反射率材料的激光增材制造[J]. 中国科学(物理学·力学·天文学), 2020, 50(3): 44-57. [14] 李权震. 微纳金属线路的烧结成形方法研究[D]. 广州: 广东工业大学, 2023. [15] YANG G N, XU G D, LI Q Z, et al. Understanding the sintering and heat dissipation behaviours of Cu nanoparticles during low-temperature selective laser sintering process on flexible substrates[J]. Journal of Physics D: Applied Physics, 2021, 54(37): 375304. |