中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2025, Vol. 25 ›› Issue (1): 010501 . doi: 10.16257/j.cnki.1681-1070.2025.0013

• 产品与应用 • 上一篇    下一篇

基于CDCA-YOLOv8的无人机图像小目标识别

吴诗娇,林伟   

  1. 福州大学物理与信息工程学院,福州 350000
  • 收稿日期:2024-06-12 出版日期:2025-01-22 发布日期:2025-01-22
  • 作者简介:吴诗娇(2000—),女,福建泉州人,硕士研究生,主要研究方向为深度学习与人工智能。

Small Object Detection in Drone Images Based on CDCA-YOLOv8

WU Shijiao, LIN Wei   

  1. College of Physics and InformationEngineering, Fuzhou University, Fuzhou 350000, China
  • Received:2024-06-12 Online:2025-01-22 Published:2025-01-22

摘要: 为解决无人机航拍图像中小目标实例多、遮挡严重的问题,提出了一种新的小目标检测算法CDCA-YOLOv8。算法在骨干网络中引入了中心注意力机制,在降低计算复杂度的同时提升特征提取能力;结合可变形卷积网络的优势,改进了卷积模块,并设计了基于可变形卷积技术的C2f模块,增强多尺度特征提取。同时设计了基于自适应结构特征融合的检测头,以提高小目标检测的精度。实验表明,与YOLOv8n相比,CDCA-YOLOv8在VisDrone2019数据集上平均精度均值mAP0.5提高了4.4个百分点,mAP0.5∶0.95提高了3.1个百分点,展示了更优的小目标检测效果。

关键词: YOLOv8, 无人机图像, 小目标识别, 特征提取

Abstract: A new small object detection algorithm CDCA-YOLOv8 is proposed to solve the problem of multiple small object instances and severe occlusion in drone aerial images. The algorithm introduces a central attention mechanism in the backbone network, which improves feature extraction capability while reducing computational complexity. Combining the advantages of deformable convolutional networks, the convolution module is improved and a C2f module based on deformable convolution technology is designed to enhance multi-scale feature extraction. A detection head based on adaptive structural feature fusion is designed to improve the accuracy of small target detection. The experiments show that compared with YOLOv8n, CDCA-YOLOv8 improves the mean average accuracy mAP0.5 by 4.4 percentage points on the VisDrone2019 dataset, and mAP0.50.95 improves by 3.1 percentage points, which demonstrates better small object detection performance.

Key words: YOLOv8, drone image, small object detection, feature extraction

中图分类号: