[1] MIN H S, LEE B Y, JEONG S C, et al. Fabrication of 10 mu m-scale conductive Cu patterns by selective laser sintering of Cu complex ink[J]. Optics and Laser Technology, 2017, 88: 128-133. [2] THEODORAKOS I, ZACHARATOS F, GEREMIA R, et al. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics[J]. Applied Surface Science, 2015, 336: 157-162. [3] ZHANG G W, ZHANG HQ, LIU X Y, et al. Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-State Chemistry and Physics, 2017, 690: 86-94. [4] KIM M I, CHOI E B, LEE J H. Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles[J]. Journal of Materials Research and Technology, 2020, 9(6):16006-16017. [5] KIM MI, LEE JH. Die sinter bonding in air using Cu@Ag particulate preform and rapid formation of near-full density bondline[J]. Journalof Materials Researchand Technology, 2021, 14: 1724-1738. [6] JEONG H S, MIN K D, LEE C J, et al. Mechanical reliability of Cu cored solder ball in flip chip package under thermal shock test[J]. Microelectronics Reliability, 2020, 112: 113918. [7] SON Y, YEO J Y, MOON H, et al. Nanoscale electronics: Digital fabrication by direct femtosecond laser processing of metal nanoparticles[J]. Advanced Materials, 2011, 23(28): 3176-3181. [8] KWON J Y, CHO H M, EOM H J, et al. Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11575-11582. [9] YANG G N, ZENG X, WANG P Y, et al. Size refinement of copper nanoparticles: A perspective from electrochemical nucleation and growth mechanism[J]. ChemElectroChem. 2021, 8(5): 819–828. [10] YANG G N, LIN W, LAI H Q, et al. Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles[J]. Ultrasonics Sonochemistry, 2021, 73:105497. [11] YANG G N, LIQ Z, TANG Z H, et al. Capillarity-promoted laser re-sintering of printed semisolid Cu nanoparticles for facile fabrication of conductive patterns with voidless structure and improved conductivity[J]. Journal of Materials Research and Technology, 2022, 18:2711-2720. [12] YANG G N, XU G D, LI Q Z, et al. Understanding the sintering and heat dissipation behaviours of Cu nanoparticles during low-temperature selective laser sintering process on flexible substrates[J]. Journal of Physics D: Applied Physics, 2021, 54(34): 375304. [13] 吴松,张昱,曹萍,等. 半导体封装Cu-Cu互连接头烧结性能研究[J]. 电子与封装,2023,23(3):103-108. [14] 曾宇杰,徐广东,吴松,等. 纳秒紫外激光修复高密度铜印制线路板研究[J]. 电子与封装,2023,23(7):9-13. |