[1] BUFFOLO M, FAVERO D, MARCUZZI A, et al. Review and outlook on GaN and SiC power devices: industrial state-of-the-art, applications, and perspectives[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1344-1355. [2] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187/188: 66-77. [3] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(3):040103. [4] 李尊, 张政, 吴毅卓, 等. 车用SiC-MOSFET的应用与技术发展综述[J]. 汽车工程师, 2025(4): 1-9. [5] CHOU W, KEMPITIYA A, VODYAKHO O. Reduction of power losses of SiC MOSFET based power modules in automotive traction inverter applications[C]// 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 2018: 1035-1038. [6] 宁圃奇, 郑丹, 康玉慧, 等. SiC车用电机驱动研究发展与关键技术[J]. 电子与封装, 2022, 22(3): 030101. [7] KUMAR K, BERTOLUZZO M, BUJA G. Impact of SiC MOSFET traction inverters on compact-class electric car range[C]// 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mumbai, India, 2014: 1-6. [8] DING X F, DU M, DUAN C W, et al. Analytical and experimental evaluation of SiC-inverter nonlinearities for traction drives used in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 146-159. [9] PARK M G, LEE K B. Analysis of switching loss based on gate resistance in a SiC MOSFET inverter[C]// 2023 IEEE Conference on Energy Conversion (CENCON), Kuching, Malaysia, 2023: 1-5. [10] ZOU M R, SUN P, WANG Y L, et al. Reshaped switching trajectory of SiC MOSFET via co-optimized active gate driver[C]// 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022: 1-8. [11] RACE S, NAGEL M, BRANDL A, et al. The role of the gate resistance and device variability on the dynamic performance of parallel SiC power MOSFETs[C]// 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bremen, Germany, 2024: 144-147. [12] CHEN S Z, CAI C F, WANG T, et al. Cryogenic and high temperature performance of 4H-SiC power MOSFETs[C]// 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013: 207-210. [13] MATOCHA K. Challenges in SiC power MOSFET design[J].Solid State Electronics, 2008, 52(10): 1631-1635. [14] 江芙蓉, 杨树, 盛况. 碳化硅MOSFET特征参数随温度变化的比较研究[J]. 电源学报, 2018, 16(6): 143-151. [15] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [16] SHI L M, QIAN J S, JIN M, et al. An effective screening technique for early oxide failure in SiC power MOSFETs[C]// 2023 IEEE 10th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), Charlotte, NC, USA, 2023: 1-4. [17] LELIS A J, GREEN R, HABERSAT D B, et al. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 316-323. [18] WANG Y, TANG K, KHAN T, et al. The effect of gate oxide processes on the performance of 4H-SiC MOSFETs and gate-controlled diodes[J]. IEEE Transactions on Electron Devices, 2008, 55(8): 2046-2053.
|