[1] FU S C, MEI Y H, LI X, et al. Reliability evaluation of multichip phase-leg IGBT modules using pressureless sintering of nanosilver paste by power cycling tests[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 6049-6058. [2] KNOERR M, KRAFT S, SCHLETZ A. Reliability assessment of sintered nano-silver die attachment for power semiconductors[C]// 2010 12th Electronics Packaging Technology Conference, Singapore, 2010. [3] NAKAKO H, SUGAMA C, KAWANA Y, et al. Sintering Cu bonding paste: Cycle reliability and applications [C]// PCIM Europe 2018 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, 2018. [4] CHEN C T, NOH S, ZHANG H, et al. Bonding technology based on solid porous Ag for large area chips[J]. Scripta Materialia, 2018, 146: 123-127. [5] LI C L, YAO L, LIU Z D, et al. The effect of EMC material properties on the large-area silver sintering process in power module[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [6] TAN Y S, LI X, CHEN X, et al. Low-pressure-assisted large-area (>800 mm2) sintered-silver bonding for high-power electronic packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(2): 202-209. [7] FU S C, ZHAO M, SHAN H Y, et al. Fabrication of large-area interconnects by sintering of micron Ag paste[J]. Materials Letters, 2018, 226: 26-29. [8] 姜涵宁. 功率模块中大面积烧结连接工艺及可靠性研究[D]. 天津: 天津大学, 2019. [9] WANG J H, GAO Y, HE Y T, et al. Revolutionizing power module manufacturing: large area sintering with silver pastes for enhanced performance and cost-effectiveness[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [10] JIANG H N, LI X, MEI Y H. Low temperature sintering of nanosilver paste for super-large-area substrate bonding[C]// 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, 2017. [11] FU S C, MEI Y H, LU G Q, et al. Pressureless sintering of nanosilver paste at low temperature to join large area (≥100mm2) power chips for electronic packaging[J]. Materials Letters, 2014, 128: 42-45. [12] HOU B, HUANG H J, WANG C M, et al. Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022. [13] LIAN J Y, MEI Y H, CHEN X, et al. Low-temperature sintering of nanoscale silver paste for double-sided attaching 9×9 mm2 chip[C]// 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, 2012. [14] MCCOPPIN J, REITZ T L, MILLER R, et al. Low temperature consolidation of micro/nanosilver die-attach preforms[J]. Journal of Electronic Materials, 2014, 43(9): 3379-3388. [15] WEI W Y, GAO L L, TAN Y S, et al. Feasibility investigation and characterization of liquid dispersant-assisted sintering of silver to bond large-area plates[J]. Advanced Engineering Materials, 2023, 25(10): 2201574. [16] MOHD ZUBIR N S, ZHANG H Q, ZOU G S, et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 2019, 48(11): 7562-7572. [17] LIU W T, WANG J H, GAO Y, et al. Simulation, prediction and verification of the thermal and electrical properties of sintered copper joints with random pore structure for power electronics packaging[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [18] XU Y, DAI D F, YANG R B, et al. Large area pressureless Cu-Cu bonding using formic acid-treated Cu particles for power device packaging[C]// 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, 2022. [19] ZHANG H Y, LI X, JIANG H N, et al. Large-area substrate bonding with single-printing silver paste sintering for power modules[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021,11(1): 11-18 [20] TAN Y S, LI X, CHEN X, et al. Feasibility investigation and characterization of low-pressure-assisted sintered-silver bonded large-area DBA plates[J]. Soldering & Surface Mount Technology, 2019, 32(3): 129-136. [21] STOJEK K J, FELBA J, NOWAK D, et al. Thermal and mechanical analysis of low-temperature and low-pressure silver-based sintered thermal joints[J]. Soldering & Surface Mount Technology, 2023, 35(1): 9-17. [22] WANG S, LI M Y, JI H J, et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 2013, 69(11/12): 789-792. [23] WANG T, ZHAO M H, CHEN X, et al. Shrinkage and sintering behavior of a low-temperature sinterable nanosilver die-attach paste[J]. Journal of Electronic Materials, 2012, 41(9): 2543-2552. [24] 丰王健. 功率模块中银焊膏大面积烧结连接应力状态及可靠性研究[D]. 天津: 天津大学, 2020 [25] FANG H, WANG C X, ZHOU S C, et al. Rapid pressureless and low-temperature bonding of large-area power chips by sintering two-step activated Ag paste[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(8): 6497-6505. [26] CHEN S, MEI Y H, WANG M Y, et al. Large-area bonding by sintering of a resin-free nanosilver paste at ultralow temperature of 180 ℃[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12(4): 707-710. [27] LEI T G, CALATA J N, LU G Q, et al. Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(1): 98-104. [28] LIU C L, MOHN F, SCHUDERER J, et al. Novel large-area attachment for high-temperature power electronics module application[C]// 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, 2017. [29] XIE Y J, WANG Y J, MEI Y H, et al. Rapid sintering of nano-Ag paste at low current to bond large area (>100 mm2) power chips for electronics packaging[J]. Journal of Materials Processing Technology, 2018, 255: 644-649. [30] GAO C S, LI S Z, YAO Q, et al. Application of nano copper paste in large-area sintering: a study on enhancing its sintering performance[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [31] NAKAKO H, NATORI M, ISHIKAWA D, et al. Copper sintering pastes for die bonding and large-area bonding [C]// PCIM Europe 2023 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, 2023. [32] BLANK T, DUDEK V, LUH M, et al. GaAs diode rectifier power module in mixed Ag- and large area Cu-sintering technology for ultra-fast and wireless electric vehicle battery charging[C]// 2019 International Conference on Electronics Packaging (ICEP), Niigata, 2019. [33] CHEN S H, WELLS J, RANER T, et al. Highly reliable silver sintering joints for power module application[C]// 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, 2023. [34] WEBER C, HUTTER M. Ag sintering-an alternative large area joining technology[C]// 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, 2018. [35] PARET P P, DEVOTO D J, NARUMANCHI S. Reliability of emerging bonded interface materials for large-area attachments[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2016, 6(1): 40-49. [36] PARET P, BHOGARAJU S K, BUSSE D, et al. Thermomechanical degradation of sintered copper under high-temperature thermal shock[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, 2024. [37] NAKAKO H, NATORI M, ISHIKAWA D, et al. Bonding between a ceramic wiring board and cooling plate using copper sintering paste[C]// PCIM Europe 2022 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, 2022. [38] TSAI C H, STEINER F, ISHIKAWA D, et al. Large-area Ag/Cu pastes sintering on Cu base plates for power module packaging[C]// 2023 International Conference on Electronics Packaging (ICEP), Kumamoto, 2023. [39] FU S C, MEI Y H, LI X, et al. Parametric study on pressureless sintering of nanosilver paste to bond large-area (≥100mm2) power chips at low temperatures for electronic packaging[J]. Journal of Electronic Materials, 2015, 44(10): 3973-3984. [40] XIAO K W, LUO S S, NGO K, et al. Low-temperature sintering of a nanosilver paste for attaching large-area power chips[C]// 2013 IEEE International Symposium on Advanced Packaging Materials, Irvine, 2013. [41] ZHAO S Y, LI X, MEI Y H, et al. Silver paste pressureless sintering on bare copper substrates for large area chip bonding in high power electronic packaging[C]// 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, 2015. [42] CHEN C T, ZHANG B W, SUGANUMA K, et al. Novel Ag salt paste for large area Cu-Cu bonding in low temperature low pressure and air condition[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022. [43] YAMAGIWA D, MATSUDA T, FURUSAWA H, et al. Pressureless sinter joining of bare Cu substrates under forming gas atmosphere by surface-oxidized submicron Cu particles[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(14): 19031-19041. [44] GAO R H, HE S L, SHEN Y, et al. Effect of substrates on fracture mechanism and process optimization of oxidation–reduction bonding with copper microparticles[J]. Journal of Electronic Materials, 2019, 48(4): 2263-2271.
|