[1] TIAN Y, ZETTERLING C M. A fully integrated silicon-carbide sigma-delta modulator operating up to 500 ℃[J]. IEEE Transactions on Electron Devices, 64(7): 2782-2788. [2] WEN Y F, CHEN C, YE Y S, et al. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials-a review[J]. Advanced Materials, 2022, 34(52): e2201023. [3] 马勇冲, 甘贵生, 罗杰, 等. 电子封装高温焊料研究新进展[J]. 中国有色金属学报, 2024, 34(2): 357-387. [4] 王文静. 粉末热机械固结法制备铜及铜碳合金的显微结构和力学性能的研究[D]. 上海: 上海交通大学, 2018: 31-40. [5] BARAI K, TIWARY C S, CHATTOPADHYAY P P, et al. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature[J]. Materials Science and Engineering: A, 2012, 558: 52-58. [6] 魏至成. 微细球磨制备超细铜粉的微观形貌与性能研究[D]. 济南: 山东大学, 2022. [7] KOBAYASHI N, KAWAKAMI Y, KAMADA K, et al. Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma[J]. Thin Solid Films, 2008, 516(13): 4402-4406. [8] 金化成,白柳杨,范俊梅,等. 高频氢等离子体增强还原制备超细铜粉[J]. 过程工程学报,2020,20(8): 979-988. [9] PHAM L Q, SOHN J H, PARK J H, et al. Comparative study on the preparation of conductive copper pastes with copper nanoparticles prepared by electron beam irradiation and chemical reduction[J]. Radiation Physics and Chemistry, 2011, 80(5): 638-642. [10] ZHOU F, ZHOU R M, HAO X F, et al. Influences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation[J]. Radiation Physics and Chemistry, 2008, 77(2): 169-173. [11] 胡永栓, 唐耀, 周珺成, 等. 室温下抗坏血酸还原法制备纳米铜粉研究[J]. 材料导报, 2013, 27(S2): 43-46. [12] WU C W, MOSHER B P, ZENG T F. One-step green route to narrowly dispersed copper nanocrystals[J]. Journal of Nanoparticle Research, 2006, 8(6): 965-969. [13] KAMIKORIYAMA Y, IMAMURA H, MURAMATSU A, et al. Ambient aqueous-phase synthesis of copper nanoparticles and nanopastes with low-temperature sintering and ultra-high bonding abilities[J]. Scientific Reports, 2019, 9: 899. [14] WEIJDEN V D R D, MAHABIR J, ABBADI A, et al. Copper recovery from copper(II) sulfate solutions by reduction with carbohydrates[J]. Hydrometallurgy, 2002, 64(2): 131-146. [15] 陈梓源. 面向第三代半导体封装互连纳米铜粉的抗氧化及烧结性能研究[D]. 广州: 广东工业大学, 2021. [16] NEKOUEI R K, RASHCHI F, RAVANBAKHSH A. Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions[J]. Powder Technology, 2013, 250: 91-96. [17] WANG H D, WANG Q, XIA W T, et al. Effect of jet flow between electrodes on power consumption and the apparent density of electrolytic copper powders[J]. Powder Technology, 2019, 343: 607-612. [18] HU W C, ZHU L, DONG D, et al. Thermal behavior of copper powder prepared by hydrothermal treatment[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(8): 817-821. [19] 牟运, 彭洋, 刘佳欣, 等. 纳米铜焊膏烧结互连技术研究现状与展望[J]. 集成技术, 2023, 12(5): 12-26. [20] BEEK V L K H, VAN PUL B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates[J]. Journal of Applied Polymer Science, 1962, 6(24): 651-655. [21] 张银侠. 复合微纳铜颗粒膏的制备及其烧结性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [22] PENG Y, MOU Y, LIU J X, et al. Fabrication of high-strength Cu-Cu joint by low-temperature sintering micron-nano Cu composite paste[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8456-8463.[ [23] ZUO Y, CARTER-SEARJEANT S, GREEN M, et al. High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticles[J]. Materials Letters, 2020, 276: 128260. [24] PARK S W, UWATAKI R, NAGAO S, et al. Low-pressure sintering bonding with Cu and CuO flake paste for power devices[C]// 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2014: 1179-1182. [25] 李俊龙, 徐杨, 赵雪龙, 等. 铜颗粒低温烧结技术的研究进展[J]. 焊接学报, 2022, 43(3): 13-24. [26] ISHIZAKI T, WATANABE R. A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding[J]. Journal of Materials Chemistry, 2012, 22(48): 25198-25206. [27] ISHIZAKI T, WATANABE R, AKEDO K, et al. Development of low-temperature sintering Cu nanoparticles[J]. Materials Research Society Proceedings, 2013, 1513(1): 111-114. [28] JEONG S, WOO K, KIM D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing[J]. Advanced Functional Materials, 2008, 18(5): 679-686. [29] ZHANG B Y, DAMIAN A, ZIJL J, et al. In-air sintering of copper nanoparticle paste with pressure-assistance for die attachment in high power electronics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(4): 4544-4555. [30] 钱靖. 基于纳米铜封装工艺的器件性能及可靠性研究[D]. 桂林: 桂林电子科技大学, 2020. [31] ISHIZAKI T, AKEDO K, SATOH T, et al. Pressure-free bonding of metallic plates with Ni affinity layers using Cu nanoparticles[J]. Journal of Electronic Materials, 2014, 43(3): 774-779.[LinkOut] [32] LIU X D, NISHIKAWA H. Improved joint strength with sintering bonding using microscale Cu particles by an oxidation-reduction process[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 455 -460. [33] GAO R H, HE S L, SHEN Y, et al. Effect of substrates on fracture mechanism and process optimization of oxidation-reduction bonding with copper microparticles[J]. Journal of Electronic Materials, 2019, 48(4): 2263-2271.
|