[1] IWAI H. Future of nano CMOS technology[J]. Solid-State Electronics, 2015, 112: 56-67. [2] RADAMSON H H, HENRY H, ZHU H, et al. State of the art and future perspectives in advanced CMOS technology[J]. Nanomaterials, 2020, 10(8): 1555. [3] MAEKAWA T, AMAKAWA S, ISHIHARA N, et al. Design of CMOS inverter-based output buffers adapting the Cherry-Hooper broadbanding technique[C]// 2009 European Conference on Circuit Theory and Design. IEEE, 2009: 511-514. [4] ABEDI Z, HEMMADY S, ANTONSEN T, et al. Electromagnetic compatibility in leakage current of CMOS integrated circuits[C]// 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE. IEEE, 2019: 765-768. [5] SHIGEMATSU S, MUTOH S, MATSUYA Y, et al. A 1-V high-speed MTCMOS circuit scheme for power-down application circuits[J]. IEEE Journal of Solid-State Circuits, 1997, 32(6): 861-869. [6] POWELL M, YANG S H, FALSAFI B, et al. Gated-Vdd: A circuit technique to reduce leakage in deep-submicron cache memories[C]// Proceedings of the 2000 International Symposium on Low Power Electronics and Design, 2000: 90-95. [7] MUKHOPADHYAY S, NEAU C, CAKICI R T, et al. Gate leakage reduction for scaled devices using transistor stacking[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2003, 11(4): 716-730. [8] RABAEY J M. 数字集成电路——电路、系统与设计(第二版)[M]. 周润德,译. 北京: 电子工业出版社,2016:130-133. [9] 陆建恩. 基于伏安特性方程的CMOS数字电路电压传输特性研究[J]. 数字技术与应用, 2020, 38(1):90-93. [10] HABER M, LEVI I, YEHOSHUA Y, et al. Differential input output CMOS (DINO-CMOS)—High performance and energy efficient logic family[C]// 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE, 2017: 1-3.
|