[1] MISHRA U K, SHEN L K, KAZIOR T E, et al. GaN-based RF power devices and amplifiers[J]. Proceedings of the IEEE, 2008, 96(2): 287-305. [2] BAR-COHEN A, MAURER J J, SIVANANTHAN A. Near-junction microfluidic cooling for wide bandgap devices[J]. MRS Advances, 2016, 1(2): 181-195. [3] BAR-COHEN A, MAURER J J, ALTMAN D H. Embedded cooling for wide bandgap power amplifiers: a review[J]. Journal of Electronic Packaging, 2019, 141(4): 040803. [4]VIA G D. GaN Reliability–where we are and where we need to go[C]// CS MANTECH Conference, May 19th-22nd, 2014, Denver, Colorado, USA, 2014: 15-18. [5] CHU K K, YUROVCHAK T, CHAO P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process[C]//2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 13-16 October, 2013, Monterey, CA, USA, 2013: 1-4. [6] INYUSHKIN A V, TALDENKOV A N, RALCHENKO V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds[J]. Physical Review B, 2018, 97(14): 144305. [7] BABI? D I, DIDUCK Q, YENIGALLA P, et al. GaN-on-diamond field-effect transistors: From wafers to amplifier modules[C]//The 33rd International Convention MIPRO, 24-28 May, 2010, Opatija, Croatia, 2010: 60-66. [8] DUMKA D C, CHOU T M, FAILI F, et al. AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10GHz[J]. Electronics Letters, 2013, 49(20): 1298-1299. [9] TYHACH M, ALTMAN D, BERNSTEIN S, et al. S2-T3: Next generation gallium nitride HEMTs enabled by diamond substrates[C]//2014 Lester Eastman Conference on High Performance Devices (LEC), 05-07 August 2014, Ithaca, NY, USA, 2014: 1-4. [10] ZHOU Y, ANAYA J, POMEROY J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34416-34422. [11] ALOMARI M, DUSSAIGNE A, MARTIN D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond[J]. Electronics Letters, 2010, 46(4): 299. [12] VAN DREUMEL G W G, TINNEMANS P T, VAN DEN HEUVEL A A J, et al. Realising epitaxial growth of GaN on (001) diamond[J]. Journal of Applied Physics, 2011, 110(1): 013503. [13] DUSSAIGNE A, MALINVERNI M, MARTIN D, et al. GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy[J]. Journal of Crystal Growth, 2009, 311(21): 4539-4542. [14] WEBSTER R F, CHERNS D, KUBALL M, et al. Electron microscopy of gallium nitride growth on polycrystalline diamond[J]. Semiconductor Science and Technology, 2015, 30(11): 114007. [15] PéCZ B, TóTH L, BARNA á, et al. Structural characteristics of single crystalline GaN films grown on (111) diamond with AlN buffer[J]. Diamond and Related Materials, 2013, 34: 9-12. [16] DUSSAIGNE A, GONSCHOREK M, MALINVERNI M, et al. High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate[J]. Japanese Journal of Applied Physics, 2010, 49(6R): 061001. [17] MENDES J C, LIEHR M, LI C H. Diamond/GaN HEMTs: Where from and Where to?[J]. Materials, 2022, 15(2): 415. [18] HAGEMAN P R, SCHERMER J J, LARSEN P K. GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Films, 2003, 443(1/2): 9-13. [19] AHMED R, SIDDIQUE A, ANDERSON J, et al. Integration of GaN and diamond using epitaxial lateral overgrowth[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39397-39404. [20] POUST B, GAMBIN V, SANDHU R, et al. Selective growth of diamond in thermal vias for GaN HEMTs[C]// 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 13-16 October 2013, Monterey, CA, USA, 2013: 1-4. [21] TADJER M J, ANDERSON T J, HOBART K D, et al. Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline diamond heat-spreading films[J]. IEEE Electron Device Letters, 2012, 33(1): 23-25. [22] TADJER M J, ANDERSON T J, HOBART K D, et al. Reduced self-heating in ALGaN/GaN HEMTs using nanocrystalline diamond heat spreading films[C]//68th Device Research Conference, 21-23 June 2010, Notre Dame, IN, USA, 2010: 125-126. [22] TADJER M J, ANDERSON T J, HOBART K D, et al. Reduced self-heating in ALGaN/GaN HEMTs using nanocrystalline diamond heat spreading films[C]//68th Device Research Conference, 2010: 125-126.[LinkOut] [23] Fujitsu Limited, Fujitsu Laboratories Limited. Fujitsu successfully grows diamond film to boost heat dissipation efficiency of GaN HEMT[EB/OL]. (2019-12-05) [2022-12-31]https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1205-01. html. [24] ZHANG H, GUO Z X, LU Y F. Enhancement of hot spot cooling by capped diamond layer deposition for multifinger AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 47-52. [25] LIAU Z L, MULL D E. Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration[J]. Applied Physics Letters, 1990, 56(8): 737-739. [26] CHAO P C, CHU K N, DIAZ J, et al. GaN-on-diamond HEMTs with 11W/mm output power at 10GHz[J]. MRS Advances, 2016, 1(2): 147-155. [27] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420. [28] SUGA T, MU F W. Direct bonding of GaN to diamond substrate at room temperature[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 03-30 June 2020, Orlando, FL, USA, 2020: 1328-1331. [29] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151. [30] CHENG Z, MU F W, YATES L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8376-8384. [31] CHO J, LI Z J, BOZORG-GRAYELI E, et al. Improved thermal interfaces of GaN-diamond composite substrates for HEMT applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(1): 79-85. [32] NOCHETTO H C, JANKOWSKI N R, BAR-COHEN A. The impact of GaN/substrate thermal boundary resistance on a HEMT device[C]// Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition, November 11-17, 2011, Denver, Colorado, USA, 2012: 241-249. [33] POMEROY J W, BERNARDONI M, DUMKA D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping[J]. Applied Physics Letters, 2014, 104(8): 083513. [34] DUMKA D C, CHOU T M, JIMENEZ J L, et al. Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications[C]// 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 13-16 October 2013, Monterey, CA, USA, 2013: 1-4. [35] CHO J, WON Y, FRANCIS D, et al. Thermal interface resistance measurements for GaN-on-diamond composite substrates[C]// 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 19-22 October 2014, La Jolla, CA, USA, 2014: 1-4. [36] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906. [37] CHO J, FRANCIS D, ALTMAN D H, et al. Phonon conduction in GaN-diamond composite substrates[J]. Journal of Applied Physics, 2017, 121(5): 055105. [38] YATES L, ANDERSON J, GU X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24302-24309. [39] MU F, XU B, WANG X, et al. A novel strategy for GaN-on-diamond device with a high thermal boundary conductance[J]. Journal of Alloys and Compounds, 2022, 905: 164076. [40] GAMBIN V, POUST B, FERIZOVIC D, et al. Impingement cooled embedded diamond multiphysics co-design[C]// 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 31 May 2016 - 03 June 2016, Las Vegas, NV, USA, 2016: 1518-1529. [41] ALTMAN D H, GUPTA A, TYHACH M. Development of a diamond microfluidics-based intra-chip cooling technology for GaN[C]// ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, July 6-9, 2015, San Francisco, California, USA, 2015. [42] CREAMER C T, CHU K K, CHAO P C, et al. S2-T6: Microchannel cooled, high power GaN-on-diamond MMIC[C]// 2014 Lester Eastman Conference on High Performance Devices (LEC), 05-07 August 2014, Ithaca, NY, USA, 2014: 1-5. [43] 余怀强, 唐光庆, 桂进乐, 等. 微系统热管理技术的新发展[J]. 压电与声光, 2018, 40(6): 931-935. [44] TADJER M J, ANDERSON T J, FEYGELSON T I, et al. Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process[J]. Physica Status Solidi (a), 2016, 213(4): 893-897. [45] CHANDRAN M, ELFIMCHEV S, MICHAELSON S, et al. Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates[J]. Journal of Applied Physics, 2017,122(14): 145303. [46] ALI B, LITVINYUK I V, RYBACHUK M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges[J]. Carbon, 2021, 179: 209-226. [47] YANG Q, MIAO J Y, ZHAO J Q, et al. Flow boiling of ammonia in a diamond-made microchannel heat sink for high heat flux hotspots[J]. Journal of Thermal Science, 2020, 29(5): 1333-1344. [48] YANG Q, HUANG Y P, NIU Z T, et al. Experimental investigation on the heat transfer characteristics of multi-point heating microchannels for simulating solar cell cooling[J]. Energies, 2022, 15(15): 5315. [49] FU J, WANG Y, WANG J, et al. Fabrication of hundreds of microns three-dimensional single crystal diamond channel along with high aspect ratio by two-step process[J]. Materials Letters, 2019, 255: 126556. [50] QI Z, ZHENG Y, ZHU X, et al. An ultra-thick all-diamond microchannel heat sink for single-phase heat transmission efficiency enhancement[J]. Vacuum, 2020, 177: 109377. [51] EVTIMOVA J, KULISCH W, PETKOV C, et al. Reactive ion etching of nanocrystalline diamond for the fabrication of one-dimensional nanopillars[J]. Diamond and Related Materials, 2013, 36: 58-63. [52] FU J, LIU Z C, ZHU T F, et al. Fabrication of microchannels in single crystal diamond for microfluidic systems[J]. Microfluidics and Nanofluidics, 2018, 22(9): 92. [53] TOROS A, KISS M, GRAZIOSI T, et al. Precision micro-mechanical components in single crystal diamond by deep reactive ion etching[J]. Microsystems & Nanoengineering, 2018, 4: 12. [54] XIE L, ZHOU T X, ST?HR R J, et al. Crystallographic orientation dependent reactive ion etching in single crystal diamond[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(11): 1705501. [55] FORSBERG P, KARLSSON M. High aspect ratio optical gratings in diamond[J]. Diamond and Related Materials, 2013, 34: 19-24. [56] KHANALILOO B, MITCHELL M, HRYCIW A C, et al. High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching[J]. Nano Letters, 2015, 15(8): 5131-5136. [57] ZHOU T X, ST?HR R J, YACOBY A. Scanning diamond NV center probes compatible with conventional AFM technology[J]. Applied Physics Letters, 2017, 111(16): 163106. [58] HICKS M L, PAKPOUR-TABRIZI A C, JACKMAN R B. Diamond etching beyond 10 μm with near-zero micromasking[J]. Scientific Reports, 2019, 9(1): 15619. [59] HO K T, MI S C, KISS M, et al. Fabrication of single crystal diamond membranes by oxygen plasma deep etching[C]// Symposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications, 19-22 May 2019, Lausanne Switzerland, 2019: 83. [60] RUF M, IJSPEERT M, VAN DAM S, et al. Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes[J]. Nano Letters, 2019, 19(6): 3987-3992. [61] ZHENG Y X, MUEHLE M, LAI J Y, et al. Bilayer metal etch mask strategy for deep diamond etching[J]. Journal of Vacuum Science & Technology B, 2022, 40(2): 022210.
|