[1] YANG F, XU C, AKIN B. Experimental evaluation and analysis of switching transient's effect on dynamic on-resistance in GaN HEMTs[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 10121-10135. [2] MIZUTANI T, ITO M, KISHIMOTO S, et al. AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation[J]. IEEE Electron Device Letters, 2007, 28(7): 549-551. [3] 高媛, 单月晖, 罗卫军. GaN数字功率放大器技术进展[J]. 微电子学, 2021, 51(6): 778-785. [4] 穆昌根, 党睿, 袁鹏, 等. 增强型GaN HEMT器件的实现方法与研究进展[J]. 电子与封装, 2022, 22(10): 100401. [5] FU J Z, FOUQUET F, KADI M, et al. Evolution ofC-V and I-Vcharacteristics for a commercial 600 V GaN GIT power device under repetitive short-circuit tests[J]. Microelectronics Reliability, 2018, 88: 652-655. [6] REN J, TANG C W, FENG H, et al. A novel 700 V monolithically integrated Si-GaN cascoded field effect transistor[J]. IEEE Electron Device Letters, 2018, 39(3): 394-396. [7] HU Q L, LI S C, LI T Y, et al. Channel engineering of normally-off AlGaN/GaN MOS-HEMTs by atomic layer etching and high-κdielectric[J]. IEEE Electron Device Letters, 2018, 39(9): 1377-1380. [8] WONG K Y, CHEN W J, CHEN K J. Integrated voltage reference generator for GaN smart power chip technology[J]. IEEE Transactions on Electron Devices, 2010, 57(4): 952-955. [9] LIAO C H, YANG S H, LIAO M Y, et al. 3.8 A 23.6 ppm/℃ monolithically integrated GaN reference voltage design with temperature range from -50℃ to 200℃ and supply voltage range from 3.9 to 24V[C]// 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, San Francisco, CA, 2020: 72-74. [10] LI A, SHEN Y, LI Z Q, et al. A monolithically integrated 2-transistor voltage reference with a wide temperature range based on AlGaN/GaN technology[J]. IEEE Electron Device Letters, 2022, 43(3): 362-365. [11] ALIM M A, AFRIN S, REZAZADEH A A, et al. Thermal response and correlation between mobility and kink effect in GaN HEMTs[J]. Microelectronic Engineering, 2020, 219: 111148. [12] JEON D Y, KOH Y, CHO C Y, et al. Impact of temperature-dependent series resistance on the operation of AlGaN/GaN high electron mobility transistors[J]. AIP Advances, 2021, 11(11): 115203. [13] TAN W S, UREN M J, FRY P W, et al. High temperature performance of AlGaN/GaN HEMTs on Si substrates[J]. Solid-State Electronics, 2006, 50(3): 511-513. [14] LI B K, CHEN K J, LAU K M, et al. Characterization of fluorine-plasma-induced deep centers in AlGaN/GaN heterostructure by persistent photoconductivity[J]. Physica Status Solidi C, 2008, 5(6): 1892-1894. [15] DONG Y, XIE Z L, CHEN D J, et al. Effects of dissipative substrate on the performances of enhancement mode AlInN/GaN HEMTs[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32(1): e2482. [16] 谷文萍, 郝跃, 张进城, 等. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究[J]. 物理学报, 2009, 58(1): 511-517. [17] STOCKMAN A, CANATO E, MENEGHINI M, et al. Threshold voltage instability mechanisms in p-GaN gate AlGaN/GaN HEMTs[C]// Proceedings of the 31st International Symposium on Power Semiconductor Devices & ICs, IEEE, Shanghai,2019: 287-290. [18] Meneghini M, Bisi D, Marcon D, et al. Trapping in GaN-based metal-insulator-semiconductor transistors: role of high drain bias and hot electrons[J]. Applied Physics Letters, 2014, 104(14): 143505.
|