中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2024, Vol. 24 ›› Issue (12): 120501 . doi: 10.16257/j.cnki.1681-1070.2024.0167

• 产品与应用 • 上一篇    下一篇

基于输电线异物的轻量级目标检测方法研究

徐玲玲,林伟   

  1. 福州大学物理与信息工程学院,福州? 350000
  • 收稿日期:2024-06-12 出版日期:2024-12-25 发布日期:2024-12-25
  • 作者简介:徐玲玲(2000—),女,安徽安庆人,硕士,主要研究方向为深度学习与嵌入式系统。

Research on Lightweight Target Detection Method Based on Transmission Line Foreign Objects

XU Lingling, LIN Wei   

  1. Collegeof Physics and Information Engineering, Fuzhou University, Fuzhou 350000, China
  • Received:2024-06-12 Online:2024-12-25 Published:2024-12-25

摘要: 输电线路上的异物检测对确保电力系统安全运行至关重要。为了提高输电线异物识别效率,改进了YOLOv3-Tiny模型。首先在头部网络中,采用深度可分离卷积替代标准卷积、归一化和激活函数结构,分离空间和通道相关性,降低卷积计算量,提高了识别的速度;其次,引入了考虑距离损失、高宽损失的EIoU的损失函数替代原始的损失函数,使得模型找到边界框预测与类别预测之间的最佳点,从而提升算法的检测效果。消融实验验证了这些改进的有效性,结果表明,改进后的模型在保持高精度的同时,检测速率(FPS)提高了2.02倍,减少了74.17%的参数量,大幅降低了计算资源需求。该算法在资源受限环境中表现出色,具备实际应用价值。

关键词: 输电线异物检测, 目标检测算法, YOLOv3-Tiny, 损失函数

Abstract: The detection of foreign objects on transmission lines is crucial for ensuring the safe operation of the power system. In order to improve the efficiency of foreign object recognition in transmission lines, the YOLOv3 Tiny model is improved. Firstly, in the head network, depthwise separable convolution is used instead of standard convolution, normalization, and activation function structures to separate spatial and channel correlations, reduce convolution computation, and improve recognition speed; secondly, the EIoU loss function considering distance loss and height and width loss is introduced to replace the original loss function, enabling the model to find the optimal point between bounding box prediction and category prediction, thereby improving the detection performance of the algorithm. The ablation experiment verifies the effectiveness of these improvements, and the results show that the improved model maintains high accuracy while increasing the detection rate (FPS) by 2.02 times, reducing the number of parameters by 74.17%, and significantly reducing the computational resource requirements. The algorithm performs well in resource constrained environments and has practical application value.

Key words: foreign object detection on transmission lines, object detection algorithm, YOLOv3-Tiny, loss function

中图分类号: