[1] NA T H, WOO S H, KIM J, et al. Comparative study of various latch-type sense amplifier[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 22(2): 425-429.
[2] CHANDRAS A, BHAASKARAN V S K. Sensing schemes of sense amplifier for signal-ended SRAM[C] // International Conference on Nextgen Electronic Technologies: Silicon to software. Chennai, India. 2017: 379-384.
[3] 高宁, 施亮, 于宗光. 一种新型灵敏放大器的设计[J]. 电子与封装, 2007, 7(6): 21-24.
[4] AGRAWAL R, TOMAR V K. Implementation and analysis of low power reduction techniques in sense amplifier[C] // International Conference on Electronics, Communication and Aerospace. Coimbatore, India. 2018: 439-444.
[5] SEEVINCK E, VAN B, ONTROP H. Current-mode techniques for high-speed VLSI circuits with application to current sense amplifier for CMOS SRAM’s[J]. IEEE Journal of Solid-State Circuits, 1991, 26(4):525-536.
[6] ZHANG K, HOSE K, DE K, et al. The scaling of data sensing schemes for high speed cache design in sub-0.18 μm technologies[C] // Symposium on VLSI Circuits Digest of Technical. Hillboro, USA. 2000: 226-227.
[7] BOWMAN K A, TANG X H, EBLE J C, et al. Impact of extrinsic and intrinsic parameter fluctuations on CMOS circuit performance[J]. IEEE Journal of Solid-State Circuits, 2000, 35(8):1186-1193.
[8] CHANG M F, SHEN S J, LIU C C, et al. An offset-tolerant current-sampling-based sense amplifier for Sub-100 nA-cell-current nonvolatile memory[C] // IEEE International Solid-State Circuits Conference. San Francisco, USA: IEEE. 2011:206-208.
[9] BHAVNAGARWALA A, KOSONOCKY S, RADENS C, et al. Fluctuation limits & scaling opportunities for CMOS SRAM cells[C] // IEEE International Electron Devices Meeting. Washington, USA: IEEE. 2005: 659- 662.
[10] PELGROM M J M, DUINMAIJER A C J, WELBERS, A P G. Matching properties of MOS transistors[J]. IEEE Jourmal of Solid-State Circuits, 1989, 24(10): 1433 -1439.
[11] KAWASUMI A, TAKEYAMA Y, HIRABAYSHI O, et al. A low-supply-voltage-operation SRAM with HCI trimmed sense amplifiers[J]. IEEE Journal of Solid-State Circuits, 2010, 45(11): 2341-2347.
[12] SHARMA V, COSEMANS S, ASHOUEI M, et al. A 4.4 pJ/access 80 MHz, 128 kbit variability resilient SRAM with multi-sized sense amplifier redundancy[J]. IEEE Journal of Solid-State Circuits, 2011, 46(10): 2416-2430.
[13] JEFREMOW M, KERM T, ALLERS W, et al. Time-differential sense amplifier for sub-80 mV bitline voltage embedded STT-MRAM in 40 nm CMOS[C] // IEEE International Solid-State Circuits Conference Digest of Technical papers. San Francisco, USA: IEEE. 2013: 216-217.
[14] KONO T, ITO T, TSURUDA T, et al. 40-nm embedded split-gate MONOS (SG-MONOS) flash macros for automotive with 160-MHz random access for code and endurance over 10 M cycles for data at the junction temperature of 170 ℃[J]. IEEE Journal of Solid-State Circuits, 2014, 49(1): 154-166.
[15] FAN M L, HU V P H, CHEN Y N , et al. Variability analysis of sense amplifier for finFET subthreshold SRAM applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(12): 878-882. |