[1] 徐文辉,陈云,王立. SiC混合功率模块封装工艺[J]. 电子与封装,2016,16(3):1-3,8. [2] 陈哲,李阳. Sn-Cu-Ni系无铅钎料的研究现状[J]. 电子与封装,2016,16(6):1-9. [3] 文惠东,林鹏荣,练滨浩,等. 多次回流对不同成分Sn-Pb凸点IMC生长的影响[J]. 电子与封装,2016,16(3):4-8. [4] MENON S, GEORGE E, OSTERMAN M, et al. High lead solder (over 85 %) solder in the electronics: RoSH exemptions and alternatives[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6):4021-4030. [5] 曾秋莲, 顾小龙, 赵新兵,等. 高温高铅焊料无铅化的研究进展[J]. 电子元件与材料, 2008, 27(8):16-19. [6] 王刘珏,薛松柏,刘晗,等. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(8):2483-2489. [7] 刘生发,谭广华,熊杰然,等. Sb对Au-Ge共晶合金铸态组织的影响[J]. 特种铸造及有色合金, 2016,36(8):785-787. [8] KOBAYASHI Y, SHIROCHI T, YASUDA Y, et al. Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties[J]. Solid State Sciences, 2011, 13(3):553-558. [9] KOBAYASHI Y, SHIROCHI T, YASUDA Y, et al. Metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution[J]. International Journal of Adhesion & Adhesives, 2012, 33:50-55. [10] LEE J, JUN J, NA W, et al. Fabrication of sinter-free conductive Cu paste using sub-10 nm copper nanoparticles[J]. Journal of Materials Chemistry C, 2017,5(47):12507-12512. [11] YAN J F, ZOUG S, HU A M, et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding[J]. Journal of Materials Chemistry, 2011,21:15981-15986. [12] LI J J, YU X, SHI T L, et al. Low-temperature and low-pressure Cu-Cu bonding by highly sinterable Cu nanoparticle paste[J]. Nanoscale Research Letters, 2017,255(12): 10.1186/s11671-017-2037-5. [13] LI J J, CHENG C L, SHI T L, et al. Surface effect induced Cu-Cu bonding by Cu nanosolder paste[J]. Materials Letters, 2016,184:193-196. [14] CHENG C L, LI J J, SHI T L, et al. A novel method of synthesizing antioxidative copper nanoparticles for high performance conductive ink[J]. Journal of Materials Science-Materials in Electronics, 2017,28(18):13556-13564. [15] LI J J, SHI T L, FENG C, et al. The novel Cu nanoaggregates formed by 5 nm Cu nanoparticles with high sintering performance at low temperature [J]. Materials Letters, 2018,216:20-23. [16] LIU J D, CHEN H T, JI H J, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 48 (8):33289-33298. [17] JEONG S, WOO K, KIM D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing[J]. Advanced Functional Materials, 2008,18(5):679-686. [18] GAO Y, ZHANG H, LI W L, et al. Die bonding performance using bimodal Cu particle paste under different sintering atmospheres[J]. Journal of Electronic Materials, 2017, 46(7):4575-4581. [19] QIU X L, CAO Y, LIN T S, et al. Large-scale synthesis of silver nanoparticles by aqueous reduction for low-temperature sintering bonding[J]. Journal of Nanomaterials, 2014,2014:594873. [20] LI M Y, XIAO Y, ZHANG Z H, et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces, 2015,7(17):9157-9168. [21] YAN J F, ZOU G S, WU A P, et al. Polymer-protected Cu-Ag mixed NPs for low-temperature bonding application[J]. Journal of Electronic Materials, 2012,41(7):1886-1892. [22] ZOU G S, YAN J F, MU F W, et al. Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application[J]. The Open Surface Science Journal, 2011,3:70-75. [23] TAN K S, CHEONG K Y. Physical and electrical characteristics of silver-copper nanopaste as alternative die-attach[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2014, 4(1):8-15. [24] TIAN Y H, JIANG Z, WANG C X, et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 2016,6:91783-91790. [25] ZHAO J, ZHANG D M, ZHAO J. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization[J]. Journal of Solid State Chemistry, 2011, 184(9):2339-2344. [26] PENG Y H, YANG C H, CHEN K T, et al. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity[J]. Applied Surface Science, 2012, 263:38-44. [27] PENG Y H, LEE C H. Synthesis of Cu-Ag core-shell particles: Study on cover silver homogeneity[J]. International Journal of the Physical Sciences, 2012, 7(3):478-486. [28] CHEN K T, RAY D, PENG Y H, et al. Preparation of Cu-Ag core-shell particles with their anti-oxidation and antibacterial properties[J]. Current Applied Physics, 2013, 13(7):1469-1501. [29] TSAI C H, CHEN S Y, SONG J M, et al. Thermal stability of Cu@Ag core-hell nanoparticles[J]. Corrosion Science, 2013,74:123-129. [30] CAO X G, ZHANG H Y. Fabrication and performance of silver coated copper powder[J]. Electronic Materials Letters, 2012,8(4):467-470. [31] HAI H T, AHN J G, KIM D J, et al. Developing process for coating copper particles with silver by electroless plating method[J]. Surface & Coatings Technology, 2006, 201(6):3788-3792. [32] LEE C, KIM N R, KOO J Y, et al. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics[J]. Nanotechnology, 2015,26(45):455601. [33] SOPOUSEK J R, PINKAS, J R, BROZ P, et al. Ag-Cu colloid synthesis: bimetallic nanoparticle characterisation and thermal treatment[J]. Journal of Nanomaterials, 2014,2014:638964. [34] SOPOUSEK J R, ZOBAC O, BURSIK J R, et al. Heat-induced spinodal decomposition of Ag-Cu nanoparticles[J]. Physical Chemistry Chemical Physics, 2015, 17(42):28277-28285. [35] GROUCHKO M, KAMYSHNY A, MAGDASSI S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing[J]. Journal of Materials Chemistry, 2009, 19(19):3057-3062. [36] KIM C K, LEE G J, LEE M K, et al. A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics[J]. Powder Technology, 2014, 263:1-6. [37] TSUJI M, HIKINO S, SANO Y, et al. Preparation of Cu@ Ag core-shell nanoparticles using a two-step polyol process under bubbling of N2 Gas[J]. Chemistry letters, 2009, 38(6): 518-519. [38] ZHONG Y, AN R, WANG C Q, et al. Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections[J]. Small, 2015,11(33):4097-4103. [39] LIU X J, ZHENG Z, WANG C Q, et al. Fusion behaviour and mechanism of ultrafine Ag-Cu nanoparticles induced by electron beam irradiation[J]. Journal of Materials Science-Materials In Electronics, 2017, 28(11):8206-8210. [40] CHEN H T, HU T Q, LI M Y, et al. Cu@Sncore-shell structure powder preform for high-temperature applications based on transient liquid phase bonding[J]. IEEE Transactions on Power Electronics, 2017, 32(1):441-451. [41] NISHIKAWA H, HIRANO T, TAKEMOTO T, et al. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste[J]. The Open Surface Science Journal, 2011, 3:60-64. [42] YAMAKAWA T, TAKEMOTO T, SHIMODA M, et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste[J]. Journal Of Electronic Materials, 2013,42(6):1260-1267. [43]黄圆,田艳红,江智. 脉冲电流快速烧结纳米铜浆料连接铜镍基板研究[J].机械工程学报, 2017, 53(4):34-42. [44]黄圆,杭春进,田艳红. 纳米铜银核壳浆料脉冲电流快速烧结连接铜基板研究[J].机械工程学报, 2019,55(24):51-56. [45] WOO K, KIM Y, LEE B, et al. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films[J]. ACS Applied Materials & Interfaces, 2011,3(7):2377-2382. [46] LI J J, SHI T L, YU X, et al. Low-temperature and low-pressure Cu-Cu bonding by pure Cu nanosolder paste for wafer-level packaging[C]. IEEE 67th Electronic Components and Technology Conference, 2017:967-981. [47] ISHIZAKI T, AKEDO K, SATOH T, et al. Pressure-free bonding of metallic plates with Ni affinity layers using Cu nanoparticles[J]. Journal of Electronic Materials, 2014,43(3):774-779. [48] WANG S, JI H J, LI M Y, et al. Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles[J]. Materials Letters, 2012,85:61-63. [49] WANG S, LI M Y, JI H J, et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 2013, 69:789-792. [50] 江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理[J].金属学报, 2016,52(1):105-112. [51] HU B , YANG F , PENG Y , et al. Effect of SiC reinforcement on the reliability of Ag nanoparticle paste for high-temperature applications[J]. Journal of Materials ence: Materials in Electronics, 2019, 30(3):2413-2418. [52] QI K, CHEN X, LU G Q. Effect of interconnection area on shear strength of sintered joint with nano-silver paste[J]. Soldering & Surface Mount Technology 2018,20(1):8-12. [53] MEI Y H, CAO Y, CHEN G, et al. Characterization and reliability of sintered nanosilver joints by a rapid current-assisted method for power electronics packaging[J]. IEEE Transactions on Device and Materials Reliability, 2013, 14(1): 262-267. [54] MEI Y H, LIAN J Y, CHEN X, et al. Thermo-mechanical reliability of double-sided IGBT assembly bonded by sintered nanosilver[J]. IEEE Transactions on Device and Materials Reliability, 2013, 14(1): 194-202. [55] LI J, LI X, WANG L, et al. A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air[J]. Materials & Design, 2018, 140(FEB.):64-72. [56] LU G Q, YANG W, MEI Y H, et al. Migration of sintered nanosilver on alumina and aluminum nitride substrates at high temperatures in dry air for electronic packaging[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(2): 600-606. [57] KIM K S, BNAG J O, JUNG S B. Electrochemical migration behavior of silver nanopaste screen-printed for flexible and printable electronics[J]. Current Applied Physics, 2013,13(2):S190-S194. [58] NOH B I, YOON J W, KIM K S, et al. Microstructure, electrical properties, and electrochemical migration of a directly printed Ag pattern[J]. Journal of Electronic Materials, 2011, 40(1): 35-41. [59] HU A, GUO J Y, ALARIFI H, et al. Low temperature sintering of Ag nanoparticles for flexible electronics packaging[J]. Applied Physics Letters, 2010, 97(15):153117. [60] MORISADA Y, NAGAOKA T, FUKUSUMI M, et al. A low-temperature bonding process using mixed Cu-Ag nanoparticles[J]. Journal of Electronic Materials, 2010,39(8):1283-1288. [61] YU X, LI J J, SHI T L, et al. A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics[J]. Journal of Alloys and Compounds, 2017, 724:365-372. [62] JI H J, ZHOU J B, LIANG M, et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J]. Ultrasonics Sonochemistry, 2018, 41:375-381. [63] 马竟轩,王尚,杨东升,田艳红.纳米银浆料热烧结及通电热老化过程动态电阻监测研究[J].机械工程学报,2020,56(8):60-68. [64] YANG F, HU B, PENG Y, et al. Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications[J]. Journal of Materials Science-Materials In Electronics, 2019,30(6):5526-5535. [65] LI X, CHEN XU, YU D J, et al. Study on adhesive reliability of low-temperature sintered high power LED modules[C]. 11th International Conference on Electronic Packaging Technology and High Density Packaging, 2010:1371-1376. [66] LI X, CHEN G, CHEN X, et al. Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test[J]. Soldering & Surface Mount Technology, 2012,24(2):120-126. [67] ZHAO Z Y, ZOU G S, ZHANG H Q, et al. The mechanism of pore segregation in the sintered nano Ag for high temperature power electronics applications[J]. Materials Letters, 2018,228:168-171. [68] ZHANG H Q, ZHAO Z Y, ZOU G S, et al. Failure analysis and reliability evaluation of silver-sintered die attachment for high-temperature applications[J]. Microelectronics Reliability, 2019,94:46-55. |