[1] CHEE C L, ZHANG C Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data[J]. Information Sciences, 2014(275): 314-347. [2] 徐丽莹, 杨玉超, 黄如.基于忆阻器的非易失逻辑研究前沿[J]. 中国基础科学,2019,27(2):1-17. [3] BORKAR S, CHIEN A A.The future of microprocessors[J].Communications of the ACM, 2011, 54(5): 67-77. [4] 郭昕婕, 王绍迪. 端侧智能存算一体芯片概述[J]. 微纳电子与智能制造,2019,1(2): 73-82. [5] 李锟, 曹荣荣, 孙毅,等. 基于忆阻器的感存算一体技术研究进展[J]. 微纳电子与智能制造, 2019,1(4):87-102. [6] ALIBART F, PLEUTIN S, GU′ERIN D, et al. An organic nanoparticle transistor behaving as a biological spiking synapse[J]. Adv Funct Mater, 2010(20): 330-337. [7] Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[J]. Nat Mater, 2011(10): 591-595. [8] REEDER J, KALTENBRUNNER M, WARE T, et al. Mechanically adaptive organic transistors for implantable electronics[J]. Adv Mater, 2014, 26(29): 4967-4973. [9] JOSBERGER E E, DENG Y X, SUN W, et al. Two-terminal protonic devices with synaptic-like short-term depression and device memory[J]. Adv Mater, 2014(26): 4986-4990. [10] LAI Q X, ZHANG L, LI Z Y, et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions[J]. Adv Mater, 2010(22): 2448-2453. [11] 张晨曦,陈艳,仪明东,等. 基于忆阻器模拟的突触可塑性的研究进展[J]. 中国科学:信息科学,2018,48(2): 115-142. [12] 张鑫, 夏天, 叶葱, 等. 基于忆阻器实现多样化STDP学习规则的突触电路设计[J]. 中国科学:技术科学, 2020: 1-10. [13] 陆骐峰, 孙富钦, 王子豪, 等. 柔性人工突触: 面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报,2020,34(1):01022-01049. [14] 王洋昊, 刘昌, 黄如, 等. 神经形态器件研究进展与未来趋势[J]. 科学通报,2020,65(10):904-915. [15] LARKMAN A U, JACK J J B. Synaptic plasticity: hippocampal LTP[J]. Curr Opin Neurobiol, 1995(5): 324-334. [16] ZUCKER R S. Calcium and activity-dependent synaptic plasticity[J]. Curr Opin Neurobiol, 1999(9): 305-313. [17] BAO J X, KANDEL E R, HAWKINS R D. Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses[J]. Science, 1997(275): 969-973. [18] SEO K, KIM I, JUNG S, et al. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device[J]. Nanotechnology, 2011(22): 223-254. [19] CITRI A, MALENKA R C. Synaptic plasticity: multiple forms, functions, and mechanisms[J]. Neuropsychopharmacology, 2008(33): 18-41. [20] ZHANG C, TAI Y T, SHANG J, et al. Synaptic plasticity and learning behaviors in ?exible arti?cial synapse based on polymer/viologen system[J]. J Mater Chem, 2016(4): 3217-3223. [21] SJ?STR?M P J, TURRIGIANO G G, NELSON S B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[J]. Neuron, 2001(32): 1149-1164. [22] PAINKRAS E, PLANA L A, GARSIDE J, et al. Spinnaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation [J]. IEEE Journal of Solid-State Circuits, 2013, 48(8):1943-1953. [23] AKOPYAN F, SAWADA J, CASSIDY A, et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10):1537-1557. [24] TrueNorth神经元芯片商用了!640万神经元、160亿个神经触突,只有10瓦的功耗![EB/OL]. (2017-06-29). https://www.sohu.com/a/153039069_465914. [25] DAVIES M, SRINIVASA N, LIN T H, et al. Loihi: a neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1):82-99. [26]英特尔推出了Pohoiki Beach:一个模拟人脑的芯片集群,速度更快[EB/OL]. (2019-07-07). https://baijiahao.baidu.com/s?id=1639274341467340021&wfr=spider&for=pc. [27] 如何看待英特尔2020年3月18日公布的1亿神经元神经拟态系统Pohoiki Springs?[EB/OL]. https://www.zhihu.com/question/380749534. [28] PEI J, DENG L, SONG S, et al. Towards artificial general intelligence with hybrid tianjic chip architecture [J]. Nature, 2019, 572(7767):106-111. [29] BENJAMIN B V, GAO P, MCQUINN E, et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations[J]. Proceedings of the IEEE, 2014,102(5):699-716. [30] CHUA L O. Memristor - the missing circuit element[J]. IEEE Trans. Circuit Theory, 1971(18):507-519. [31] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83. [32] YANG J, STRUKOV D, STEWART D. Memristive devices for computing[J]. Nature Nanotech, 2013(8):13-24. [33] HU S, WU S, JIA W, et al. Review of nanostructured resistive switching memristor and its applications[J]. Nanoscience and Nanotechnology Letters, 2014, 6(9): 729-757. [34] PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 2015(521): 61-64. [35] CHI P, LI S, XU C, et al. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory[J]. ACM SIGARCH Computer Architecture News, 2016, 44(3): 27-39. [36]GUPTA I, SERB A, KHIAT A, et al. Real-time encoding and compression of neuronal spikes by metal-oxide memristors[J]. Nat Commun, 2016(7):1-9. [37] YAO P, WU H, GAO B, et al. Face classification using electronic synapses[J]. Nat Commun, 2017(8):1-8. [38] WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning[J]. Nat Electron, 2018(1):137-145. [39] CAI F, CORRELL J M, LEE S H, et al. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations[J]. Nat Electron, 2019(2): 290-299. [40] YAO P, WU H, GAO B, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020(577): 641-646. [41]YI W, TSANG K K, LAM S K, et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons[J]. Nat Commun, 2018(9):1-10. [42] WANG Z Q, ZENG T, REN Y Y, et al. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices[J], Nature Commun, 2020(11):1-10. [43]CHEN S, MAHMOODI M R, SHI Y, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks[J]. Nat Electron, 2020(3): 638-645. [44] SRINIVASAN G, SENGUPTA A, ROY K. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning[J]. Sci Rep, 2016(6): 1-13. [45] SENGUPTA A, PANDA P, WIJESINGHE P, et al. Magnetic tunnel junction mimics stochastic cortical spiking neurons[J]. Sci Rep, 6:1-9. [46] ?ELEZNY J, WADLEY P, OLEJNíK K, et al. Spin transport and spin torque in antiferromagnetic devices[J]. Nature Phys, 2018(14):220-228. [47] GUILLAUME P, KOTB J, PIERRE V, et al. Ultra-fast and high-reliability SOT-MRAM: from cache replacement to normally-off computing[J]. IEEE Transactions on Multi-Scale Computing Systems, 2016, 2(1):49-60. [48] GROLLIER J, QUERLIOZ D, CAMSARI K Y, et al. Neuromorphic spintronics[J]. Nat Electron, 2020(3):360-370. [49] 蔡佳林. 基于自旋电子器件的神经形态器件研究[D]. 北京:中国科学院大学, 2019. [50] SCOTT W F, CHRISTOPHER M N. Phase-change memory-towards a storage-class memory[J]. IEEE Transactions on Electron Devices, 2017, 64(11):4374-4385. [51] TUMA T, PANTAZI A, LE GALLO M, et al. Stochastic phase-change neurons[J]. Nature Nanotech, 2016(11): 693-699. [52] WUTTIG M, YAMADA N. Phase-change materials for rewriteable data storage[J]. Nature Mater, 2007(6): 824-832. [53] ZHANG W, MAZZARELLO R, WUTTIG M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J]. Nat Rev Mater, 2019(4): 150-168. [54] NANDAKUMAR S R, BOYBAT I, LE GALLO M, et al. Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses[J]. Sci Rep, 2020(10): 1-11. [55] BHATTACHARJEE S, WIGCHERING R, MANNING H G, et al. Emulating synaptic response in n- and p-channel MoS2 transistors by utilizing charge trapping dynamics[J]. Sci Rep, 2020(10): 1-8. [56] 李乃峰. 二硫化铪阻变存储器的阻变机理研究及忆阻性能优化[D]. 兰州:兰州大学, 2020. [57]CHANTHBOUALA A, GARCIA V, CHERIFI R, et al. A ferroelectric memristor[J]. Nature Mater, 2012(11): 860-864. [58] BOYN S, GROLLIER J, LECERF G, et al. Learning through ferroelectric domain dynamics in solid-state synapses[J]. Nat Commun, 2017(8): 1-7. [59] CHEN Y, ZHOU Y, ZHUGE F, et al. Graphene-ferroelectric transistors as complementary synapses for supervised learning in spiking neural network[J]. npj 2D Mater Appl, 2019(31): 1-9. [60] MA C, LUO Z, HUANG W, et al. Sub-nanosecond memristor based on ferroelectric tunnel junction[J]. Nat Commun, 2020(11): 1-9. [61] BERDAN R, MARUKAME T, OTA K, et al. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors[J]. Nat Electron, 2020(3): 259-266. [62] KHAN A I, KESHAVARZI A, DATTA S. The future of ferroelectric field-effect transistor technology[J]. Nat Electron, 2020(3): 588-597. [63] 蒋真正. 铁电存储器在神经形态的应用研究[D]. 上海:华东师范大学, 2018. [64] 徐伟民, 黄鲁, 蒋明峰. 基于NOR Flash的卷积计算单元的设计[J]. 计算机硬件, 2020, 39(5): 63-68. [65] DANIAL L, PIKHAY E, HERBELIN E, et al. Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing[J]. Nat Electron, 2019(2): 596-605. [66] XIANG Y C, HUANG P, YANG H Z, et al. Storage reliability of multi-bit flash oriented to deep neural network[C]//Proceedings of 2019 IEEE International Electron Devices Meeting, Dec. 9-11, 2019, USA, San Francisco, IEEE, 2019: 919-922.
|