[1]
MONDAL A, ROY A, MITRA R, et al. Comparative study of variations in gate oxide
material of a novel underlap DG MOS-HEMT for analog/RF and high power applications[J].
Silicon, 2020, 12(9):2251-2257. [2]
MUKHERJEE H, DASGUPTA R, KAR M, et al. A comparative analysis of analog
performances of underlapped dual gate AlGaN/GaN based MOS-HEMT and schottky-HEMT[C].2020
IEEE Calcutta Conference (CALCON). IEEE, 2020. [3]
BINDRA A. Wide-bandgap-based power devices: reshaping the power electronics
landscape[J]. IEEE Power Electronics Magazine, 2015, 2(1):42-47. [4]
JONES E A, WANG F F, COSTINETT D. Review of commercial GaN power devices and
GaN-based converter design challenges[J]. IEEE Journal of Emerging &
Selected Topics in Power Electronics, 2016, 4(3):707-719. [5]明鑫,张宣,周琦,等.增强型GaN功率器件栅驱动技术设计考虑[J].电力电子技术,2017,51(8):75-78. [6]冯旭东,胡黎,张宣,等.GaN功率器件栅驱动电路技术综述[J].微电子学,2020,50(2):207-213. [7]NG W T, YU J, WANG M, et al. Design trends
in smart gate driver ICs for power GaN HEMTs[C].2018
14th IEEE International Conference on Solid-State and Integrated Circuit
Technology (ICSICT). IEEE, 2018. [8] 第三代半导体产业技术创新战略联盟. 2018第三代半导体电力电子技术路线图[OB/OL]. (2019-10-07)https://www.2016elite.com/community/topic_show?id=43e528960393 [9]KE X, SANKMAN J, CHEN Y, et al. A 10 MHz
3-to-40 V VIN tri-slope gate driving GaN DC-DC converter with 40.5 dB μV
spurious noise compression and 79.3% ringing suppression for automotive
applications[C]. 2017 IEEE International
Solid-State Circuits Conference, San Francisco, CA. 2017: 430-431. [10]KE X, MA D B. A 3-to-40 V VIN 10-to-50 MHz
12 W isolated GaN driver with self-excited tdead minimizer achieving 0.2 ns/0.3
ns tdead, 7.9% minimum duty ratio and 50 V/ns CMTI[C].2018 IEEE International Solid -State Circuits Conference, San
Francisco, CA, 2018: 386-388. [11]KE X, SANKMAN J, SONG M K, et al. A 3-to-40
V 10-to-30 MHz automotive-use GaN driver with active BST balancing and VSW
dual-edge dead-time modulation achieving 8.3% efficiency improvement and 3.4 ns
constant propagation delay[C]. 2016IEEE
International Solid-State Circuits Conference, San Francisco, CA, 2016:
302-304. [12] ACHIM S, WICHT B. 25.3 A 1.3 A gate driver
for GaN with fully integrated gate charge buffer capacitor delivering 11 nC
enabled by high-voltage energy storing[C].2017
IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2017:432-433. [13]ZHANG Y, ZHU J, SUN W, et al. A
capacitive-loaded level shift circuit for improving the noise immunity of high
voltage gate drive IC[C].2015 IEEE 27th
International Symposium on Power Semiconductor Devices & IC's
(ISPSD)?2015:173-176. [14]YU J, ZHANG W J, SHORTEN A, et al. A smart
gate driver IC for GaN power transistors[C]. In?2018
IEEE 30th International Symposium on Power Semiconductor Devices and ICs
(ISPSD)2018: 84-87. [15] CHEN Y P, MA D B. 15.7 A 8.3 MHz GaN power
converter using Markov continuous RSSM for 35 dBμV conducted EMI attenuation
and one-cycle T ON rebalancing for 27.6 dB V O jittering suppression[C].2019 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2019: 250-252. [16]MING X, ZHANG X, ZHANG Z W, et al. A
High-reliability Half-Bridge GaN FET gate driver with advanced floating bias
control techniques[C].2019 31st
International Symposium on Power Semiconductor Devices and ICs
(ISPSD)?2019: 127-130. [17]Texas Instruments. LM5113:1.2-A/5-A, 100-V
half bridge gate driver for GaNFET. datasheet[OB/OL].[2020-12-16] www.ti.com. [18]ON Semiconductor. NCP51820:?high
performance, 650 V half bridge gate driver for GaN power switches. datasheet[OB/OL].
[2020-12-16] https://www.onsemi.com/products/discretes-drivers/gate-drivers/ncp51820. [19] Infineon. 1EDS5673K: GaN EiceDRIVER? gate
driver IC with excellent robustness and efficiency, the perfect fit to drive
gallium nitride (GaN) HEMTs. Datasheet [OB/OL]. [2020-12-16]https://www. infineon.com/. [20] Texas Instruments. UCC21220A:4-A/6-A,
3.0-kVRMS dual-channel isolated gate driver with 5-V UVLO Datasheet[OB/OL]. [2020-12-16]https://www.ti.com/. [21]HERZER R. Gate driver solutions for modern
power devices and topologies [C].ESSCIRC
2018IEEE 44th European Solid State Circuits Conference (ESSCIRC) 2018:262-270. [22]PENG L, WU R, FANG X, et al. A simple low
cost monolithic transformer for high-voltage gate driver applications
[J].?IEEE electron device letters,?2013,35(1), 108-110. [23] TO D N,ROUGER N,ARNOULD J D, et al. Modeling and
characterization of 0.35 μm CMOS coreless transformer for gate drivers[C].2014 EEE 2 I6th International Symposium on
Power Semiconductor Devices & IC's (ISPSD). IEEE, 2014:330-333. [24]SEIDEL A, COSTA M, JOOS J, et al. Isolated
100% PWM gate driver with auxiliary energy and bidirectional FM/AM signal
transmission via single transformer[C].?2015
IEEE Applied Power Electronics Conference and Exposition (APEC), 2015:
2581-2584. [25]JAVID M, PTACEK K, BURTON R, et al. CMOS
bi-directional ultra-wideband galvanically isolated die-to-die communication
utilizing a double-isolated transformer[C].2018 IEEE 30th International
Symposium on Power Semiconductor Devices and ICs (ISPSD),2018:88-91. [26] Digikey. NV6117: 650 V single GaNFast? power
IC (120 mΩ) . datasheet[OB/OL]. [2020-12-16] https://www.digikey.com/ [27] UJITA S, KINOSHITA Y, UMEDA H, et al. A fully integrated GaN-based
power IC including gate drivers for high-efficiency DC-DC Converters[C]// Vlsi
Circuits. IEEE, 2016:1-2. [28]TANG G, KWAN A M, WONG R K, et al. Digital
integrated circuits on an E-mode GaN power HEMT platform[J].IEEE Electron
Device Letters,?2017,38(9), 1282-1285. [29]ZHU M H, MATIOLI E. Monolithic integration
of GaN-based NMOS digital logic gate circuits with E-mode power GaN
MOSHEMTs[C].2018 IEEE 30th International Symposium on Power Semiconductor
Devices and ICs (ISPSD). IEEE, 2018:236-239. [30] TSAI C L, WANG Y H, KWAN M H, et al. Smart GaN platform: Performance
& challenges[C]// 2017 IEEE International Electron Devices Meeting (IEDM).
IEEE, 2017:33.1. [31] NAKAJIMA A, NISHIZAWA S I, KUBOTA S, et
al. An Overview of GaN-Based Monolithic Power Integrated Circuit Technology on
Polarization-Junction Platform[J]. 2015:1-4. [32]GIANDALIA M, ZHANG J, RIBARICH T. 650 V
AllGaN? power IC for power supply applications[C].2016 IEEE 4th Workshop on
Wide Bandgap Power Devices and Applications (WiPDA). IEEE, 2016:220-222. [33] FICHTENBAUM N, GIANDALIA M, SHARMA S, et al. Half-bridge GaN power ICs:
performance and application[J]. IEEE Power Electronics Magazine, 2017,
4(3):33-40. [34] NAKAJIMA A,NISHIZAWA S I,OHASHI H, et al. GaN-based monolithic power
integrated circuit technology with wide operating temperature on
polarization-junction platform[C].2015 IEEE 27th International Symposium on Power
Semiconductor Devices & IC's (ISPSD). IEEE, 2015: 357-360. [35] SUN R , LIANG Y C , YEO Y C , et al.
All-GaN power integration: devices to functional subcircuits and converter
ICs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,
2020, 8(1):31-41.
|