[1] FATTAH M, RAMíREZ M, DANESHTALAB M, et al. CoNA: Dynamic application mapping for congestion reduction in many-core systems[C]// International Conference on Computer Design (ICCD), 2012: 364-370. [2] FATTAH M, DANESHTALAB M, LILJEBERG P, et al. Smart hill climbing for agile dynamic mapping in many-core systems[C]// ACM/EDAC/IEEE Design Automation Conference, 2013: 10-15. [3] ANAGNOSTOPOULOS I, TSOUTSOURAS V, BARTZAS A, et al. Distributed run-time resource management for malleable applications on many-core platforms[C]// Design Automation Conference (DAC), 2013: 1-6. [4] NG J, WANG X, SINGH A, et al. Defragmentation for efficient runtime resource management in NoC-based many-core systems[C]// IEEE Transactions on Very Large Scale Integration Systems, 2016: 3359-3372. [5] WANG X, FEI T, ZHANG B, et al. On runtime adaptive tile defragmentation for resource management in many-core systems[C]// Microprocessors and Microsystems - Embedded Hardware Design, 2016: 161-174. [6] PATHANIA A, VENKATARAMANI V, SHAFIQUE M, et al. Defragmentation of tasks in many-core architecture[C]// ACM Transactions on Architecture and Code Optimization, 2017: 1-21. [7] HUANG L, YUAN F, XU Q. Lifetime reliability-aware task allocation and scheduling for MPSoC platforms[C]// Design Automation, and Test in Europe, 2009: 51-56. [8] WANG L, LV P, LIU L, et al. A lifetime reliability-constrained runtime mapping for throughput optimization in many-core systems[C]// IEEE Trans CAD Integrated Circuits Syst, 2019: 1771-1784. [9] WANG L, JIANG S, CHEN S, et al. Optimized mapping algorithm to extend lifetime of both NoC and cores in many-core system[C]// Integration, 2019: 6782-6794. [10] KAPADIA N, PASRICHA S. A runtime framework for robust application scheduling with adaptive parallelism in the dark-silicon era[J]. IEEE Transactions on Very Large Scale Integration Systems, 2016, 25(2): 534-546. [11] KRIEBEL F, REHMAN S, SUN D. Adaptive soft error resilience for reliability-heterogeneous processors in the dark silicon era[C]// IEEE Design Automation Conference (DAC), 2014: 1-6. [12] KAPADIA N A, PASRICHA S. VARSHA: variation and reliability-aware application scheduling with adaptive parallelism in the dark-silicon era[C]// Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015: 1060-1065. [13] SHAFIQUE M, GNAD D, GARG S, et al. Variability-aware dark silicon management in on-chip many-core systems[C]// Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015: 387-392. [14] HOVEIDA M, AGHAALIAKBARI F, BASHIZADE R, et al. Efficient mapping of applications for future chip multiprocessors in dark silicon era[J]. ACM Transactions on Design Automation of Electronic Systems, 2017, 22(4): 1-26. [15] BHARATHWAJ R, SIDDHARTH G. Job arrival rate aware scheduling for asymmetric multi-core servers in the dark silicon era[C]// International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2014: 1-9. [16] MUHAMMAD U, MUHAMMAD S, J?RG H. Power-efficient accelerator allocation in adaptive dark silicon many-core systems[C]// Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015: 916-919. [17] ANIL K. Dark silicon aware runtime mapping for many-core systems: A patterning approach[C]// Proceedings of the 33rd IEEE International Conference on Computer Design (ICCD’15). IEEE, 2015: 573-580. [18] ANIL K, MOHAMMAD H, AMIR M, et al. thermal aware performance boosting through dark silicon patterning[C]// IEEE Transactions on Computers, 2018: 1062-1077. [19] ANUP D, AKASH K, BHARADWAJ V. Reliability and energy-aware mapping and scheduling of multimedia applications on multiprocessor systems[C]// IEEE Transactions on Parallel and Distributed Systems, 2016: 869-884. [20] THIDAPAT C, HU X, ROBERT P. Temperature-aware scheduling and assignment for hard real-time applications on MPSoCs[C]// IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011: 1884-1897. [21] JUNLONG Z, JIANMING Y, JING C. Peak temperature minimization via task allocation and splitting for heterogeneous MPSoC real-time systems[J]. Journal of Signal Processing Systems., 2016: 111-121. [22] ARYABARTTA S. Thermal aware scheduling and mapping of multiphase applications onto chip multiprocessor[C]// Design, Automation, and Test in Europe, 2016: 1096-1101. [23] MAJED V, GOKHAN M. Thermal-aware run-time thread migration for interconnects[C]// International Symposium on Low Power Electronics and Design, 2016: 230-235. [24] BAGHER S, MOHAMMADREZA B, HAMID N. Physical-aware task migration algorithm for dynamic thermal management of SMT multi-core processors[C]// Asia and South Pacific Design Automation Conference. 2014: 292-297. [25] YOUNG G, MINYONG K, JAE M. M-DTM: migration-based dynamic thermal management for heterogeneous mobile multi-core processors[C]// Design, Automation, and Test in Europe (DATE), 2015: 1533-1538. [26] HANWOONG J, CHANHEE L, SHIN-HAENG K, et al. Dynamic behavior specification and dynamic mapping for real-time embedded systems: Hopes approach[C]// ACM Transactions on Embedded Computing Systems, 2014: 1-26. [27] MENGQUAN L, WEICHEN L, LEI Y, et al. Chip temperature optimization for dark silicon many-core systems[C]// IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018: 941-953. [28] MD F, DAN Z, MAGDY B, Dark silicon-power-thermal aware runtime mapping and configuration in heterogeneous many-core NoC[C]// IEEE International Symposium on Circuits and Systems (ISCAS), 2017: 1-4. [29] FATEMEH A, MOHADDESEH H, MOHAMMAD A, et al. Efficient processor allocation in a reconfigurable CMP architecture for dark silicon era[C]// International Conference on Computer Design (ICCD), 2016: 336-343. [30] WEICHEN L, LEI Y, WEIWEN J, et al. Thermal-aware task mapping on dynamically reconfigurable Network on Chip based multiprocessor system on chip[C]// IEEE Transactions on Computers, 2018: 1818-1834. [31] MD F, DAN Z, MAGDY A. Power-thermal aware balanced task-resource co-allocation in heterogeneous many CPU-GPU cores NoC in dark silicon era[C]// IEEE International System on Chip Conference (SOCC), 2018: 260-265. [32] DING H, GU H, YANG Y, et al. 3D networks-on-chip mapping targeting minimum signal TSVs[J]// IEICE Electron Express, 2013, 10(18): 20130518. [33] MANNA K, SWAMI S, CHATTOPADHYAY S, et al. Integrated through-silicon via placement and application mapping for 3D mesh-based NoC design[J]. ACM Transactions on Embedded Computing Systems, 2016, 16(1): 1-25. [34] JHA V, DEOL S, JHA M, et al. Energy and latency aware application mapping algorithm & optimization for homogeneous 3D Network on Chip[J]. Computing Research Repository, 2014, arXiv: 1404.2512. [35] AGYEMAN M O, AHMADINIA A, Bagherzadeh N. Energy and performance-aware application mapping for inhomogeneous 3D networks-on-chip[J]. Journal of Systems Architecture, 2018, 89: 103-117. [36] ELMILIGI H, GEBALI F, EL-KHARASHI M W. Power-aware mapping for 3D-NoC designs using genetic algorithms[J]. FNC/MobiSPC, 2014, 34: 538-543. [37] 王源. 非规则拓扑的三维片上网络低功耗映射优化[D]. 西安: 西安电子科技大学, 2018: 5-12. [38] RAPARTI V Y, KAPADIA N A, PASRICHA S. ARTEMIS: An aging-aware runtime application mapping framework for 3D NoC-based chip multiprocessors[J]. IEEE Transactions on Multi-Scale Computing Systems, 2017, 3(2): 72-85. [39] FENG G, GE F, YU S, et al. A thermal-aware mapping algorithm for 3D mesh network-on-chip architecture[C]// IEEE International Conference on ASIC, Shenzhen, China: IEEE, 2013: 1-4. [40] WANG X, JIANG Y, YANG M, et al. HRC: A 3D NoC architecture with genuine support for runtime thermal-aware task management[J]. IEEE Transactions on Computers, 2017, 66(10): 1676-1688. [41] DEMIRIZ A, AHANGARI H, OZTURK O. Temperature-aware core mapping for heterogeneous 3D NoC design through constraint programming[C]// Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Sweden: IEEE, 2020: 312-318. [42] MOSAYYEBZADEH A, AMIRASKI M M, HESSABI S. Thermal and power aware task mapping on 3D Network on chip[J]. Computers and Electrical Engineering, 2016, 51: 157-167. [43] LI B, WANG X, SINGH A K, et al. On runtime communication and thermal-aware application mapping and defragmentation in 3D NoC systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(12): 2775-2789. [44] DING H, GU H, YANG Y, et al. 3D networks-on-chip mapping targeting minimum signal TSVs[J]. IEICE Electron Express, 10(18): 20130518. [45] HAGHBAYANM. H, MIELE A, RAHMANI A, et al. A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era[C]// Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016: 854-857. [46] HAGHBAYANM H, RAHMANIA M. Can dark silicon be exploited to prolong system lifetime?[C]// IEEE Design & Test, 2018: 51-59. [47] HAGHBAYANM H, MIELE A, RAHMANI A M, et al. Performance/reliability-aware resource management for many-cores in dark silicon era[C]// IEEE Transactions on Computers, 2009:1599-1612. [48] DENNIS G, MUHAMMAD S, FLORIAN K, et al. Hayat: Harnessing dark silicon and variability for aging deceleration and balancing[C]// ACM/EDAC/IEEE Design Automation Conference (DAC), 2015: 1-6. [49] RATHORE V, CHATURVEDI V, SINGH A. K, et al. HiMap: A hierarchical mapping approach for enhancing lifetime reliability of dark silicon manycore systems[C]// Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018: 991-996.
中文引用格式:吴倩,王小航. 众核任务映射算法研究现状与发展趋势[J]. 电子与封装,2022,22(5):050302. 英文引用格式:WU Qian, WANG Xiaohang. Current and emerging trends of task mapping in many-core systems[J]. Electronics & Packaging, 2022, 22(5): 050302. 最新录用说明: 此版本为经同行评议被本刊正式录用的文章。其内容、版式可能与正式出版(印刷版)稍有差异,正式出版后此版本会更新,请以正式出版版本为准。本文已确定卷期、页码以及DOI,可以根据DOI引用。 本文尚未正式出版,未经许可,不得转载。
|