中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2019, Vol. 19 ›› Issue (5): 016 -21. doi: 10.16257/j.cnki.1681-1070.2019.0505

• 电路设计 • 上一篇    下一篇

基于异构多核平台的Caffe框架物体分类算法实现与加速

谢达,周道逵,季振凯,戴新宇,武睿   

  1. 中国电子科技集团公司第五十八研究所,江苏 无锡 214072
  • 收稿日期:2018-09-04 出版日期:2019-05-19 发布日期:2019-05-19
  • 作者简介:谢 达(1986—),男,黑龙江伊春人,硕士学历,工程师,现从事FPGA设计与开发方面的研究。

Implementation and Acceleration of Object Classification Algorithm of Caffe Frame Based on Heterogeneous Multicore Platform

XIE Da,ZHOU Daokui,JI Zhenkai,DAI Xinyu,WU Rui   

  1. China Electronic Technology Group Corporation No.58 Research Institute,Wuxi 214072,China
  • Received:2018-09-04 Online:2019-05-19 Published:2019-05-19

摘要: 随着深度学习的快速发展,神经网络和深度学习算法已经广泛应用于图像处理。基于FPGA的神经网络加速设计,搭建了以快速特征嵌入的卷积结构(Caffe) 框架、卷积神经网络为核心的物体识别系统,该系统使用Zynq-7000 系列异构多核架构芯片实现。完成了神经网络模型与参数的移植、多层结构的神经网络构建、计算密集度分析以及硬件加速设计。结果表明,设计的基于异构多核平台的Caffe 框架物体分类系统实现了物体的识别和分类,且识别速度远超传统CPU 架构的识别速度,从而为后续的深入研究提供一种新思路。

关键词: Caffe 框架, ZYNQ, 卷积神经网络, 物体分类

Abstract: With the rapid development of deep learning, neural networks and deep learning algorithms have been widely used in image processing.This article explores the FPGA-based neural network acceleration design, and builds an object recognition system based on Convolutional Neural Network of convolutional architecture for fast feature embedding (Caffe)framework,which implements neural network with Zynq-7000 series heterogeneous multicore architecture chip.Transplantation of neural network models and parameters,construction of multi-layer structured neural network, computational intensity analysis and hardware acceleration design are realized.The results show that the Caffe framework object classification system based on heterogeneous multicore platform realizes the function of object recognition and classification, and the recognition speed goes beyond the traditional CPU architecture,which provides a new idea for the subsequent in-depth study.

Key words: Caffe framework, ZYNQ, Convolutional Neural Network, object classification

中图分类号: