中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装 ›› 2021, Vol. 21 ›› Issue (5): 050503 . doi: 10.16257/j.cnki.1681-1070.2021.0512

所属专题: 人工智能

• 产品、应用与市场 • 上一篇    

基于卷积神经网络的图像分类及应用

王彬;高嘉平;司耸涛   

  1. 中科芯集成电路有限公司,江苏 无锡 214072
  • 收稿日期:2020-11-09 出版日期:2021-05-18 发布日期:2020-12-25
  • 作者简介:王彬(1982—),男,吉林省吉林市人,硕士,高级工程师,主要研究方向为32位微控制器、嵌入式系统设计、直流开关电源、交流开关电源。

ImageClassification and Application Based on Convolutional Neural Network

WANG Bin, GAO Jiaping, SI Songtao   

  1. China KeySystem & Integrated Circuit Co., Ltd.,Wuxi 214072, China
  • Received:2020-11-09 Online:2021-05-18 Published:2020-12-25

摘要: 当前的目标检测在更换检测目标时就必须重新训练卷积神经网络模型,这使得更换检测目标花费时间变多,训练成本增加,且人员对模型的了解程度也提高。针对此问题提出了运用卷积神经网络图像分类的方法,首先对检测目标的各个检测状态进行分类,然后运用卷积神经网络图像分类模型对输入图像实时进行图像分类,最后通过分类出来的图像类别来判断检测目标的状态。实验结果表明,该方法能快速更换检测目标,检测准确性可以提高至99.9%,同时对训练成本和人员的技术要求也大幅降低。

关键词: 深度学习, 卷积神经网络, 图像分类, 图像检测

Abstract: At present, the convolutional neural network(CNN) model must be retrained when the detection target is replaced, which makes the replacement of the detection target take more time, the training cost increases, and the understanding of the model also improves. To solve this problem, the method of image classification using CNN is proposed. Firstly, each detection state of the detection target is classified. Then, the image classification model of CNN is used to classify the input image in real time. The experimental results show that this method can quickly change the detection target, the detection accuracy can be improved to 99.9 %, and the training cost and personnel technical requirements are also greatly reduced.

Key words: deep-learning, convolutionalneuralnetworks, imagedetection, imageclassification

中图分类号: