[1] DARPA. This web feature will disappear in 5 seconds [EB/OL]. (2013-01-28) [2020-11-20] https://www.darpa.mil/news-events/2013-01-28. [2] HWANG S W, ROGERS J A. A physically transient form of silicon electronics[J]. Science, 2012, 337(6102): 1640-1644. [3] HWANG S W, HUANG X, SEO J H, et al. Materials for bioresorbable radio frequency electronics[J]. Advanced Materials, 2013, 25: 3526-3531. [4] LENSSEN K M H, JOCHEMSEM R. Method and device for protection of an MRAM device against tampering: US7712147[P]. (2010-04-05). [5] ZHAO Y, LI K, LOU W, et al. Study of ASIC self-destruction technology based on MEMS initiator[C]. IEEE 8th International Conference on Nano/Micro Engineered and Molecular Systems, April 7-10, 2013, Suzhou, China. 2013: 851-854. [6] 赵晓岩. 一种电子设备的自毁装置: CN104331675A[P]. 2015-02-04. [7] 郑若成. MOS管器件击穿机理分析[J]. 电子与封装, 2006, 6(4): 36-39. [8] TAO H, HWANG S W, MARELLI B, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement[J]. Proceedings of the National Academy of Sciences, 2014, 111: 17385-17389. [9] TENG L, YE S, WANG S H, et al. Liquid metal-based transient circuits for flexible and recyclable electronics[J]. Advanced Functional Materials. 2019, 29: 1808739. [10] JAMSHIDI R, CHEN Y, MONTAZAMI R. Active transiency: a novel approach to expedite degradation in transient electronics[J]. Materials, 2020, 13: 1514. [11] BANERJEE N, XIE Y, RAHMAN M M, et al. From chips to dust: the mems shatter secure chip[C]. IEEE International Conference On MEMS, Jan 26-30, 2014, San Francisco, CA, USA. 2014: 1123-1126. [12] GUMUS A, ALAM A, HUSSAIN A M, et al. Expandable polymer enabled wirelessly destructible high-performance solid state electronics[J]. Advanced Materials Technologies, 2017, 2: 1600264. [13] 王向展, 夏好松. 一种基于吸水树脂的物理自毁器件封装结构: CN110010554A [P]. 2019-07-12. [14] WILLIAMS M. Xerox PARC’s new chip willself destruct in 10 seconds [EB/OL]. (2015-09-10) [2020-11-20] https://www.cio.com/article/2981911. [15] GU X W, LOU W Z, SONG R C, et al. Simulation research on a novel micro-fluidic self-destruct device for microchips[C]. IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, Jan 20-23, 2010, Xiamen, China. 2010: 375-378. [16] LEE C H, JEONG J, LIU Y, et al. Materials and wireless microfluidic systems for electronics capable of chemical dissolution on demand[J]. Advanced Functional Materials. 2015, 25: 1338-1343. [17] BANERJEE N, XIE Y, KIM H. Microfluidic device for triggered chip transience[C]. 2013 IEEE Sensors Conference, Nov 3-6, 2013, Baltimore, MD, USA. 2013: 920-923. [18] PARK C W, KANG S K, HERNANDEZ H L, et al. Thermally triggered degradation of transient electronic devices[J]. Advanced Materials, 2015, 27 (25): 3783-3788. [19] 娄文忠, 丁旭冉, 赵越. 一种含能发火药剂与发火芯片一体化封装结构: CN204100927U[P]. 2015-01-14. [20] 朱朋,周翔,沈瑞琪,等. 介电式Al/CuO复合薄膜点火桥的电爆性能[J]. Chinese Journal of Energetic Materials, 2011, 19(4): 366-369. [21] BAHRAMI M, TATON G, CONDRA V, et al. Magnetron sputtered Al-CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate[J]. Propellants, Explosives, Pyrotechnics, 2014, 39:365-373. [22] PANDEY S S, MASTRANGELO C H. An exothermal energy release layer for microchip transience[C]. 2013 IEEE Sensors Conference, Nov 3-6, 2013, Baltimore, MD, USA. 2013: 1-3. [23] PANDEY S S, BANERJEE N, XIE Y, et al. Self-destructing secured microchips by on-chip triggered energetic and corrosive attacks for transient electronics[J]. Advanced Materials Technologies, 2018, 3: 1800044. [24] 王守旭,沈瑞琪,叶迎华,等. 多孔硅含能芯片的制备工艺和性能研究[J]. Chinese Journal of Energetic Materials, 2010, 18(5): 527-531. [25] YOON J, LEE J, CHOI B, et al. Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics[J]. Nano Research, 2017, 10(1): 87-96 [26] 王为奎,张孝虎,黄强,等. 某型空空导弹自毁装置技术研究[J]. 航空兵器, 2012, 2: 53-54. [27] LEE H K, CHANG S I, YOO E, Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes[C]//IEEE Sensors Journal, 2009, 9: 1748-1755. [28] GAO X, ZHAO Y, MA H. Fringing electric field sensors for anti-attack at system-level protection[J]. Sensors, 2018, 18: 3034. [29] 王世锋,陈杰,闫硕,等. 电子设备的数据安全防护方法及装置: CN107657183B[P]. 2020-03-27. [30] 柴俊沙. 一种电路防破坏保护装置: CN204795913U[P]. 2015-11-18. [31] 林平,廖雄高,杜湘洋,等. 一种加密防拆设备及其光检测电路: CN205249179U[P]. 2016-05-18.
|