[1] 陈文求,张雪平,李桢林,等. 5G通讯用高频/高速基板材料的研究进展及华烁的发展规划[C]// 第二十届中国覆铜板技术研讨会论文集. 中国电子材料行业协会覆铜板材料分会,2019:9. [2] SUZUKI O. Nanoscale profile copper for high speed transmission printed wiring boards[C]// 2017 Pan Pacific Microelectronics Symposium (Pan Pacific). IEEE, 2017: 1-6. [3] D T. Ultra low profile copper foil for very low loss material[C]// Proceedings of SMTA International. 2016. [4] H A F, R J W, R J C. Conductor profile effects on the propagation constant of microstrip transmission lines[C]// 2010 IEEE MTT-S International Microwave Symposium. IEEE, 2010: 868-871. [5] B G, H S, C S, et al. Non-classical conductor losses due to copper foil roughness and treatment[C]// 2005 IPC Electronic Circuits World Convention. 2005. [6] 辜信实. 印制电路用覆铜箔层压板(第二版)[M]. 北京:化学工业出版社, 2013, 119-120, 139. [7] 黄友明, 王平, 黄永发.电解铜箔表面结构及性能影响因素[J]. 中南大学学报(自然科学版), 2010, 41(06): 2162-2166. [8] 李文康. 电解铜箔制造技术探讨[J]. 上海有色金属, 2005,26(01): 16-20. [9] 易光斌, 杨湘杰, 彭文屹, 等. 铜离子浓度对电解铜箔组织性能的影响[J]. 电镀与涂饰, 2015, 34(07): 371-374. [10] 金荣涛, 赵莉. 压延铜箔制备技术分析[J]. 上海有色金属, 2014, 35(02): 86-90. [11] 赵天胜, 陈宾, 贺玲慧. 高频线路用压延铜箔粗糙度的影响因素[C]// 2019年中国铜加工产业年度大会暨中国(绍兴)铜产业发展高峰论坛. [C].中国有色金属加工工业协会,2019:5. [12] S O, Y A, T H, et al. Nano anchoring copper foil for next generation printed wiring boards[C]// 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). IEEE, 2016: 1-6. [13] S O. Nanoscale profile copper for high speed transmission printed wiring boards[C]// 2017 Pan Pacific Microelectronics Symposium (Pan Pacific). IEEE, 2017: 1-6. [14] O N, O H, T T, et al. Profile-free copper foil for high-density packaging substrates and high-frequency applications[C]// Proceedings Electronic Components and Technology, 2005. ECTC'05. IEEE, 2005: 457-461. [15] W C, W N, Z G, et al. Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination[J]. Applied Surface Science, 2017, (422): 738-744. [16] K Y H, LY W, K Y H, et al. Thermally stable siloxane hybrid matrix with low dielectric loss for copper-clad laminates for high-frequency applications[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8335-8340. [17] 祝大同. 毫米波电路用基板材料技术的新发展[J]. 覆铜板资讯, 2017, (01):10-16, 9. [18] 关迟记, 曾宪平, 陈广兵. 应用于小型化微带天线的高介电常数低介质损耗覆铜板[J]. 印制电路信息,2016,24(02):18-22. [19] 胡福田. 高性能聚四氟乙烯覆铜板研究[D]. 广州:华南理工大学, 2005. [20] F S. Copper Clad Laminate for High Frequency Printed-circuit Board in 5G era[D]. York:University of York, 2018. [21] L R, H X Z, G Q H, et al. Variations in surface and electrical properties of polytetrafluoroethylene film after plasma-induced grafting of acrylic acid[J]. Nuclear Science and Techniques, 2016, 27(3): 62-80. [22] 李苗, 邹嘉佳, 刘建军, 等.聚四氟乙烯覆铜板发展概况[J]. 电子与封装, 2018, 18(06): 1-4, 25. [23] Y Y, W J, Y M, et al. Influence of SiO2 addition on properties of PTFE/TiO2 microwave composites[J]. Journal of Electronic Materials, 2018, 47(1): 633-640. [24] 张勇, 陈强, 冯澍畅, 等. FEP含量对PTFE基高频PCB覆铜板性能的影响[J]. 电子与封装, 2019, 19(03): 41-43. [25] 向中荣. 一种高剥离强度改性聚四氟乙烯覆铜板的制备方法[P]. 江苏省:CN110948917A, 2020.4.3. [26] G J, W H, Z C, et al. MPPE/SEBS composites with low dielectric loss for high-frequency copper clad laminates applications[J]. Polymers, 2020, 12(9): 1875. [27] M J, L G, Z L. Study on epoxy matrix modified with poly (2,6-dimethyl-1,4-phenylene ether) for application to copper clad laminate[J]. Composites science and technology, 2002, 62(6): 783-789. [28] C J. The effect of radiation losses on high frequency PCB performance[M]//IPC Apex Expo. 2014.
|